В строке шестизначных чисел первое число 123456, последнее 654321. Соседние числа отличаются на 1 или на 1000. Но ни одно число не делится на 1000. Докажите, что хотя бы одно число делится на 13.
Эта функция дифференцируема на всех числовой прямой, она будет убывающей, если её производная ≤ 0 на всей числовой прямой (при этом ни на каком отрезке производная не должна быть тождественно равна нулю, иначе она на этом промежутке не будет меняться)
y' = -3x^2 + 2px - 3 ≤ 0
У квадратного трёхчлена старший коэффициент меньше нуля, поэтому чтобы неравенство было выполнено при всех x, дискриминант должен быть неположительным.
х>-0,5
ответ: (-0,5;+беск.)
б) 3х=>-15|:3
х=>-5
ответ: [-5;+беск.)
2) а) 4х+-3<=-9
4х<=-9+-3
4х<=-6|:4, или 4х<=-12|:4
х<=-1,5, или х<=-3
ответ: (-беск.; -3]
б) 7х-2>11х
7х-11х>2
-4х>2|:(-4)
х<-0,5
ответ: (-беск.; -0,5)
3) а) 8х-7<3х+13
8х-3х<13+7
5х<20|:5
х<4
ответ: (-беск.; 4)
б) 4х+3=>8х+5
4х-8х=>5-3
-4х=>2|:(-4)
х<=-0,5
ответ: (-беск.; -0,5]
4) а) 2(3х-8)-12>4-6(7-2х)
6х-16-12>4-42+12х
-6х>-10|:(-6)
х<5/3
ответ: (-беск.; 5/3)
y' = -3x^2 + 2px - 3 ≤ 0
У квадратного трёхчлена старший коэффициент меньше нуля, поэтому чтобы неравенство было выполнено при всех x, дискриминант должен быть неположительным.
D/4 = (2p/2)^2 - (-3) * (-3) = p^2 - 9 ≤ 0
p^2 ≤ 9
-3 ≤ p ≤ 3
ответ. при -3 ≤ p ≤ 3.