Відповідь:
1. Щоб звільнитися від ірраціональності в знаменнику дробу 2/(5√8), ми можемо помножити і чисельник, і знаменник на √8:
2/(5√8) = (2√8)/(5√8 * √8) = (2√8)/(5 * 8) = (2√8)/40 = √8/20
Отже, після спрощення, отримуємо дріб √8/20.
2. Щоб звільнитися від ірраціональності в знаменнику дробу 6/(√10 - 2), ми можемо використати метод множників спільного знаменника. Множимо чисельник і знаменник на спряжений вираз до √10 - 2, тобто √10 + 2:
6/(√10 - 2) = 6(√10 + 2)/((√10 - 2)(√10 + 2))
= 6(√10 + 2)/(√10^2 - 2^2)
= 6(√10 + 2)/(10 - 4)
= 6(√10 + 2)/6
= √10 + 2
Отже, після спрощення, отримуємо дріб √10 + 2.
2
3
2x³-3x²-11x+6 |x-3
2x³-6x² 2x^2+3x-2
---------------
3x²-11x
3x²-9x
-----------------
-2x+6
-2x+6
---------------
0
x=-2 2*4+3*(-2)-2=8-6-2=0
4
15^9 оканчивается на 5
26^9 оканчивается на 6
39^9
в 1 оканчивается на 9
во 2 оканчивается на 1
в 3 оканчивается на 9
.............................................
в 9 оканчивается на 9 (в нечетной степени)
5+6+9=20,значит оканчивается на 0
5
99^9 оканчивается на 9, значит (99^99)^9 оканчивается на 9 (см 4)
6
x^4+6x³+3x²+ax+b |x²+4x+3
x^4+4x³+3x² x²+2x-8
----------------------
2x³+ +ax
2x²+8x²+6x
----------------------------
-8x²+(a-6)x+b
-8x²-32x-24
-----------------------------
0
a-6=-32⇒a=-32+6=-26
b=-24
Відповідь:
1. Щоб звільнитися від ірраціональності в знаменнику дробу 2/(5√8), ми можемо помножити і чисельник, і знаменник на √8:
2/(5√8) = (2√8)/(5√8 * √8) = (2√8)/(5 * 8) = (2√8)/40 = √8/20
Отже, після спрощення, отримуємо дріб √8/20.
2. Щоб звільнитися від ірраціональності в знаменнику дробу 6/(√10 - 2), ми можемо використати метод множників спільного знаменника. Множимо чисельник і знаменник на спряжений вираз до √10 - 2, тобто √10 + 2:
6/(√10 - 2) = 6(√10 + 2)/((√10 - 2)(√10 + 2))
= 6(√10 + 2)/(√10^2 - 2^2)
= 6(√10 + 2)/(10 - 4)
= 6(√10 + 2)/6
= √10 + 2
Отже, після спрощення, отримуємо дріб √10 + 2.