В таблице представлены результаты измерения роста 15-летних детей. 1) Сколько детей было измерено? 2) Сколько детей ростом от 151 до 170 см? 3) Сколько детей имеют рост не менее 165 см?
3) 0 < x ≤ 2 2x+1 ≤ -(x²-2x) 2x+1 ≤ -x²+2x x²+1 ≤ 0 х∈∅, т.к. значение х²+1 неотрицательно при любом х
4) х>2 2x+1 ≤ x²-2x x²-4x-1 ≥ 0 см решение выше в п.2) С учётом того, что x>2, получаем x∈[2+√5; +∞) Объединяя полученные интервалы получаем ответ: x∈(-∞; 2-√5] U [2+√5; +∞)
2|x+0,5| ≤ |x(x-2)|
0,502
1) x≤-0,5 -(2x+1) ≤ x²-2x
-2x-1 ≤ x²-2x
x²+1 ≥ 0
Неравенство верно при любом х∈R
Учитывая, что x≤-0,5, получаем х∈(-∞; -0,5]
2) -0,5 < x ≤ 0 2x+1 ≤ x²-2x
x²-4x-1 ≥ 0
D=16+4*1=20
x₁=(4+√20)/2=(4+2√5)/2=2+√5
x₂=(4-√20)/2=(4-2√5)/2 =2-√5
(x-(2+√5))(x-(2-√5)) ≥ 0
+ - +
(2-√5)(2+√5)
Учитывая, что -0,5 < x ≤ 0, получаем х∈(-0,5; 2-√5]
3) 0 < x ≤ 2 2x+1 ≤ -(x²-2x)
2x+1 ≤ -x²+2x
x²+1 ≤ 0
х∈∅, т.к. значение х²+1 неотрицательно при любом х
4) х>2 2x+1 ≤ x²-2x
x²-4x-1 ≥ 0
см решение выше в п.2)
С учётом того, что x>2, получаем x∈[2+√5; +∞)
Объединяя полученные интервалы получаем ответ:
x∈(-∞; 2-√5] U [2+√5; +∞)
x²-5|x-1,8| ≤ 5x
1,8
1) x≤1,8 x²+(5x-9) ≤ 5x
x²+5x-9-5x ≤ 0
x²-9 ≤ 0 + - +
(x-3)(x+3)≤ 0 -33
x∈[-3;3]
учитываем, что х≤1,8, получаем что х∈[-3;1,8]
2) x>1,8 x²-(5x-9) ≤ 5x
x²-5x+9-5x ≤ 0
x²-10x+9 ≤ 0
(x₁*x₂ =9 и x₁+x₂=10) => x₁=1; x₂=9
(x-1)(x-9) ≤ 0
+ - +
19
x∈[1; 9]
Учитывая. что х>1,8, получаем что х∈(1,8; 9]
ответом в неравенстве будет объединение полученных промежутков,
т.е. отрезок [-3;9]
Находим длину полученного отрезка:
L = | 9-(-3)|= |9+3|= |12| = 12
ответ: 12