Пусть b=х см - ширина прямоугольника, тогда его длина равна a=х+6 см. Площадь прямоугольника равна: S=a*b=х(х+6) см После того, как длину прямоугольника увеличили на 9 см, она составила а=х+6+9=х+15 см; ширину увеличили на 12 см - х+12 см. Площадь увеличилась в 3 раза: 3*х(х+6) Составим и решим уравнение: (х+15)*(х+12)=3х(х+6) х²+15х+12х+180=3х²+18х х²+27х+180-3х²-18х=0 -2х²+9х+180=0 2х²-9х-180=0 D=b²-4ac = (-9)²+4*2*180=81+1440=1521 (√1521=39) x₁= = = 12 x₂= = = -7,5 - не подходит, потому что х<0 х=12 см - первоначальная ширина прямоугольника. х+6=12+6=18 см - длина прямоугольника. Периметр прямоугольника равен: Р=2(а+b)=2*(12+18)=2*30=60 см. ОТВЕТ: периметр первоначального прямоугольника равен 60 см.
Диагональ основания равна по теореме Пифагора √(6²+8²)=10/см/,
угол между диагональю параллелепипеда и диагональю прямоугольника, которая является проекцией диагонали на плоскость основания параллелепипеда, это и есть данный в условии угол в 30°, тогда высота параллел. - да равна 10*tg30°=10√3/3, а площадь боковой поверхности - это произведение периметра основания на высоту, т.е.
(6+8)*2*10√3/3=280√3/3/см²/. тогда площадь полной поверхности равна 96см²+280√3/3см²
6. Определим пределы интегрирования, решив уравнение х²-4х-5=0, по теореме, обратной теореме Виета корни равны -1 и5. Площадь фигуры найдем, как интеграл от разности (0-(х²-4х-5))дх, он равен -х³/3+2х²+5х, подставим верхний и нижний пределы интегрирования. Получим
7.√(3х+2)(х-2)≥х+6; ОДЗ уравнения находим, как пересечение решений двух неравенств (3х+2)(х-2)≥0; х+6≥0; решение второго х≥-6, решение первого по методу интервалов -2/32
+ - +
(-∞;]-2/3]∪[2;+∞), и, значит, ОДЗ уравнения [-6;-2/3]∪[2;+∞)
Возведем в квадрат обе части 3х²-6х+2х=х²+12х+36; 2х²-16х-40=0; х²-8х-20=0; По теореме, обратной теореме Виета находим х₁=10; х₂=-2- оба корня входят в ОДЗ.
Проверка показывает, что оба корня подходят, поэтому ответ 10; -2.
Площадь прямоугольника равна: S=a*b=х(х+6) см
После того, как длину прямоугольника увеличили на 9 см, она составила а=х+6+9=х+15 см; ширину увеличили на 12 см - х+12 см. Площадь увеличилась в 3 раза: 3*х(х+6)
Составим и решим уравнение:
(х+15)*(х+12)=3х(х+6)
х²+15х+12х+180=3х²+18х
х²+27х+180-3х²-18х=0
-2х²+9х+180=0
2х²-9х-180=0
D=b²-4ac = (-9)²+4*2*180=81+1440=1521 (√1521=39)
x₁= = = 12
x₂= = = -7,5 - не подходит, потому что х<0
х=12 см - первоначальная ширина прямоугольника.
х+6=12+6=18 см - длина прямоугольника.
Периметр прямоугольника равен: Р=2(а+b)=2*(12+18)=2*30=60 см.
ОТВЕТ: периметр первоначального прямоугольника равен 60 см.
Две площади основания равны 2*6*8=96/см²/
Диагональ основания равна по теореме Пифагора √(6²+8²)=10/см/,
угол между диагональю параллелепипеда и диагональю прямоугольника, которая является проекцией диагонали на плоскость основания параллелепипеда, это и есть данный в условии угол в 30°, тогда высота параллел. - да равна 10*tg30°=10√3/3, а площадь боковой поверхности - это произведение периметра основания на высоту, т.е.
(6+8)*2*10√3/3=280√3/3/см²/. тогда площадь полной поверхности равна 96см²+280√3/3см²
6. Определим пределы интегрирования, решив уравнение х²-4х-5=0, по теореме, обратной теореме Виета корни равны -1 и5. Площадь фигуры найдем, как интеграл от разности (0-(х²-4х-5))дх, он равен -х³/3+2х²+5х, подставим верхний и нижний пределы интегрирования. Получим
-125/3+50+25-(1/3+2-5)=-126/3+75+3=78-42=36/ед.кв./
7.√(3х+2)(х-2)≥х+6; ОДЗ уравнения находим, как пересечение решений двух неравенств (3х+2)(х-2)≥0; х+6≥0; решение второго х≥-6, решение первого по методу интервалов -2/32
+ - +
(-∞;]-2/3]∪[2;+∞), и, значит, ОДЗ уравнения [-6;-2/3]∪[2;+∞)
Возведем в квадрат обе части 3х²-6х+2х=х²+12х+36; 2х²-16х-40=0; х²-8х-20=0; По теореме, обратной теореме Виета находим х₁=10; х₂=-2- оба корня входят в ОДЗ.
Проверка показывает, что оба корня подходят, поэтому ответ 10; -2.