В таблице приведены результаты (в метрах) 40 участников соревнований по метанию копья 1) Разбейте сведения на классы группы 25-29; 30-34 и простройте таблицу частот 2) простройте полигон частот 3) найдите среднее значение моду и медиану выборки мне очень нужно
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
Объяснение:
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
136 + 16 > 143 неверно
В решении.
Объяснение:
Решить уравнения:
1) х² - 10х - 24 = 0
D=b²-4ac = 100 + 96 = 196 √D=14;
х₁=(-b-√D)/2a
х₁=(10-14)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(10+14)/2
х₂=24/2
х₂=12;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) 3х² - 7х + 4 = 0
D=b²-4ac = 49 - 48 = 1 √D=1;
х₁=(-b-√D)/2a
х₁=(7-1)/6
х₁= 6/6
х₁= 1;
х₂=(-b+√D)/2a
х₂=(7+1)/6
х₂=8/6
х₂=4/3;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3) 9у² + 6у + 1 = 0
D=b²-4ac = 36 - 36 = 0 √D=0;
у=(-b±√D)/2a
у=(-6±0)/18
у = -6/18
у = -1/3.
Проверка путём подстановки вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.
4) 3р² + 2р + 1 = 0
D=b²-4ac = 4 - 12 = -8
D < 0;
Уравнение не имеет действительных корней.