1. Тербеліс теңдеуінің түрі x=5cos(16 πt+8). Тербеліс периоды қандай?
2
Объяснение:
1. Тербеліс теңдеуінің түрі x=5cos(16 πt+8). Тербеліс периоды қандай?
2. Массасы 5гр материалдың нүкте 0,5 Гц жиілікпен гармониялық тербеліс жасайды. Тербеліс амплитудасы 3 см. Нүктеге әсер етуші ең үлкен күш қандай
3. Массасы 16 кг дене қатаңдығы К=100Н/м серіппеге ілінген. Өзіндік тербелісінің жиілігі қандай?
4. Пружинаға 10 кг. жұк ілінген . 9,8 Н күштің әсерінен пружина 1,5 см. созылатындығын біле өтырып, өсы жүктің вертикаль тербелісінің периодын анықтау керек.
Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=16 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*16+3*(-7)=11
16а-21=11
16а=11+21
16а=32
а=2
Решим графически систему уравнений:
2x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2x + 3y = 11 5x +2y = 12
3у=11-2х 2у=12-5х
у=(11-2х)/3 у=(12-5х)/2
Таблицы:
х -2 1 4 х -2 0 2
у 5 3 1 у 11 6 1
Согласно графика, координаты точки пересечения прямых (≈1,3; ≈2,8)
1. Тербеліс теңдеуінің түрі x=5cos(16 πt+8). Тербеліс периоды қандай?
2
Объяснение:
1. Тербеліс теңдеуінің түрі x=5cos(16 πt+8). Тербеліс периоды қандай?
2. Массасы 5гр материалдың нүкте 0,5 Гц жиілікпен гармониялық тербеліс жасайды. Тербеліс амплитудасы 3 см. Нүктеге әсер етуші ең үлкен күш қандай
3. Массасы 16 кг дене қатаңдығы К=100Н/м серіппеге ілінген. Өзіндік тербелісінің жиілігі қандай?
4. Пружинаға 10 кг. жұк ілінген . 9,8 Н күштің әсерінен пружина 1,5 см. созылатындығын біле өтырып, өсы жүктің вертикаль тербелісінің периодын анықтау керек.
Координаты точки пересечения прямых (≈1,3; ≈2,8)
Решение системы уравнений (14/11; 2 и 27/33)
Объяснение:
Определить коэффициент а и найти решение системы уравнений графически:
ax + 3y = 11
5x +2y = 12, если известно что первое уравнение этой системы обращается в верное равенство при x=16 и y= -7.
1) Вычисляем а. Для этого в первое уравнение подставляем заданные значения х и у:
ax + 3y = 11
а*16+3*(-7)=11
16а-21=11
16а=11+21
16а=32
а=2
Решим графически систему уравнений:
2x + 3y = 11
5x +2y = 12
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2x + 3y = 11 5x +2y = 12
3у=11-2х 2у=12-5х
у=(11-2х)/3 у=(12-5х)/2
Таблицы:
х -2 1 4 х -2 0 2
у 5 3 1 у 11 6 1
Согласно графика, координаты точки пересечения прямых (≈1,3; ≈2,8)
Решение системы уравнений (14/11; 2 и 27/33)