Как решить уравнение
Ваше уравнение
(+2)(−1)(+10)=120
1
Раскройте скобки
{\color{#c92786}{x(x+2)(x-1)(x+10)}}=120x(x+2)(x−1)(x+10)=120
(−1)(+10)⋅2+2(−1)(+10)=120
{\color{#c92786}{(x-1)(x+10) \cdot x^{2}+2x(x-1)(x+10)}}=120(x−1)(x+10)⋅x2+2x(x−1)(x+10)=120
2
{\color{#c92786}{(x-1)(x+10) \cdot x^{2}}}+2x(x-1)(x+10)=120(x−1)(x+10)⋅x2+2x(x−1)(x+10)=120
(+10)⋅3−1(+10)⋅2+2(−1)(+10)=120
{\color{#c92786}{(x+10) \cdot x^{3}-1(x+10) \cdot x^{2}}}+2x(x-1)(x+10)=120(x+10)⋅x3−1(x+10)⋅x2+2x(x−1)(x+10)=120
3
{\color{#c92786}{(x+10) \cdot x^{3}}}-1(x+10) \cdot x^{2}+2x(x-1)(x+10)=120(x+10)⋅x3−1(x+10)⋅x2+2x(x−1)(x+10)=120
4+103−1(+10)⋅2+2(−1)(+10)=120
{\color{#c92786}{x^{4}+10x^{3}}}-1(x+10) \cdot x^{2}+2x(x-1)(x+10)=120x4+10x3−1(x+10)⋅x2+2x(x−1)(x+10)=120
4
4+103−(+10)⋅2+2(−1)(+10)=120
x^{4}+10x^{3}-{\color{#c92786}{(x+10) \cdot x^{2}}}+2x(x-1)(x+10)=120x4+10x3−(x+10)⋅x2+2x(x−1)(x+10)=120
4+103−(3+102)+2(−1)(+10)=120
x^{4}+10x^{3}-\left({\color{#c92786}{x^{3}+10x^{2}}}\right)+2x(x-1)(x+10)=120x4+10x3−(x3+10x2)+2x(x−1)(x+10)=120
5
x^{4}+10x^{3}-\left(x^{3}+10x^{2}\right)+2x(x-1)(x+10)=120x4+10x3−(x3+10x2)+2x(x−1)(x+10)=120
4+103−3−102+2(−1)(+10)=120
x^{4}+10x^{3}-x^{3}-10x^{2}+2x(x-1)(x+10)=120x4+10x3−x3−10x2+2x(x−1)(x+10)=120
6
Объедините подобные члены
x^{4}+{\color{#c92786}{10x^{3}}}{\color{#c92786}{-x^{3}}}-10x^{2}+2x(x-1)(x+10)=120x4+10x3−x3−10x2+2x(x−1)(x+10)=120
4+93−102+2(−1)(+10)=120
x^{4}+{\color{#c92786}{9x^{3}}}-10x^{2}+2x(x-1)(x+10)=120x4+9x3−10x2+2x(x−1)(x+10)=120
7
x^{4}+9x^{3}-10x^{2}+{\color{#c92786}{2x(x-1)(x+10)}}=120x4+9x3−10x2+2x(x−1)(x+10)=120
4+93−102+2(+10)⋅2−2(+10)=120
x^{4}+9x^{3}-10x^{2}+{\color{#c92786}{2(x+10) \cdot x^{2}-2x(x+10)}}=120x4+9x3−10x2+2(x+10)⋅x2−2x(x+10)=120
8
x^{4}+9x^{3}-10x^{2}+{\color{#c92786}{2(x+10) \cdot x^{2}}}-2x(x+10)=120x4+9x3−10x2+2(x+10)⋅x2−2x(x+10)=120
4+93−102+23+202−2(+10)=120
x^{4}+9x^{3}-10x^{2}+{\color{#c92786}{2x^{3}+20x^{2}}}-2x(x+10)=120x4+9x3−10x2+2x3+20x2−2x(x+10)=120
9
x^{4}+9x^{3}-10x^{2}+2x^{3}+20x^{2}{\color{#c92786}{-2x(x+10)}}=120x4+9x3−10x2+2x3+20x2−2x(x+10)=120
4+93−102+23+202−22−20=120
x^{4}+9x^{3}-10x^{2}+2x^{3}+20x^{2}{\color{#c92786}{-2x^{2}-20x}}=120x4+9x3−10x2+2x3+20x2−2x2−20x=120
10
x^{4}+9x^{3}-10x^{2}+2x^{3}+{\color{#c92786}{20x^{2}}}{\color{#c92786}{-2x^{2}}}-20x=120x4+9x3−10x2+2x3+20x2−2x2−20x=120
4+93−102+23+182−20=120
x^{4}+9x^{3}-10x^{2}+2x^{3}+{\color{#c92786}{18x^{2}}}-20x=120x4+9x3−10x2+2x3+18x2−20x=120
x^{4}+{\color{#c92786}{9x^{3}}}-10x^{2}+{\color{#c92786}{2x^{3}}}+18x^{2}-20x=120x4+9x3−10x2+2x3+18x2−20x=120
4+113−102+182−20=120
x^{4}+{\color{#c92786}{11x^{3}}}-10x^{2}+18x^{2}-20x=120x4+11x3−10x2+18x2−20x=120
12
x^{4}+11x^{3}{\color{#c92786}{-10x^{2}}}+{\color{#c92786}{18x^{2}}}-20x=120x4+11x3−10x2+18x2−20x=120
4+113+82−20=120
x^{4}+11x^{3}+{\color{#c92786}{8x^{2}}}-20x=120x4+11x3+8x2−20x=120
Решение
tg(4x) = -1/√3 = -√3/3
4x = -π/6 + πk, k∈Z
x = -π/24 + (πk/4), k∈Z
x∈[-π/2; π/2]
Найдем, при каких k корни уравнения будут принадлежать указанному в условии отрезку:
-π/2 ≤ -π/24 + (πk/4) ≤ π/2
-π/2 + π/24 ≤ πk/4 ≤ π/2 + π/24
-11π/24 ≤ πk/4 ≤ 13π/24
-11/6 ≤ k ≤ 13/6, k∈Z
k = -1, 0, 1, 2
Итого будет 4 корня.
k = -1, x1 = -π/24 - π/4 = (-π - 6π)/24 = -7π/24
k = 0, x2 = -π/24
k = 1, x3 = -π/24 + π/4 = (-π + 6π)/24 = 5π/24
k = 2, x4 = -π/24 + 2π/4 = (-π + 12π)/24 = 11π/4
ответ: -7π/24, -π/24, 5π/24, 11π/24
Как решить уравнение
Ваше уравнение
(+2)(−1)(+10)=120
1
Раскройте скобки
(+2)(−1)(+10)=120
{\color{#c92786}{x(x+2)(x-1)(x+10)}}=120x(x+2)(x−1)(x+10)=120
(−1)(+10)⋅2+2(−1)(+10)=120
{\color{#c92786}{(x-1)(x+10) \cdot x^{2}+2x(x-1)(x+10)}}=120(x−1)(x+10)⋅x2+2x(x−1)(x+10)=120
2
Раскройте скобки
(−1)(+10)⋅2+2(−1)(+10)=120
{\color{#c92786}{(x-1)(x+10) \cdot x^{2}}}+2x(x-1)(x+10)=120(x−1)(x+10)⋅x2+2x(x−1)(x+10)=120
(+10)⋅3−1(+10)⋅2+2(−1)(+10)=120
{\color{#c92786}{(x+10) \cdot x^{3}-1(x+10) \cdot x^{2}}}+2x(x-1)(x+10)=120(x+10)⋅x3−1(x+10)⋅x2+2x(x−1)(x+10)=120
3
Раскройте скобки
(+10)⋅3−1(+10)⋅2+2(−1)(+10)=120
{\color{#c92786}{(x+10) \cdot x^{3}}}-1(x+10) \cdot x^{2}+2x(x-1)(x+10)=120(x+10)⋅x3−1(x+10)⋅x2+2x(x−1)(x+10)=120
4+103−1(+10)⋅2+2(−1)(+10)=120
{\color{#c92786}{x^{4}+10x^{3}}}-1(x+10) \cdot x^{2}+2x(x-1)(x+10)=120x4+10x3−1(x+10)⋅x2+2x(x−1)(x+10)=120
4
Раскройте скобки
4+103−(+10)⋅2+2(−1)(+10)=120
x^{4}+10x^{3}-{\color{#c92786}{(x+10) \cdot x^{2}}}+2x(x-1)(x+10)=120x4+10x3−(x+10)⋅x2+2x(x−1)(x+10)=120
4+103−(3+102)+2(−1)(+10)=120
x^{4}+10x^{3}-\left({\color{#c92786}{x^{3}+10x^{2}}}\right)+2x(x-1)(x+10)=120x4+10x3−(x3+10x2)+2x(x−1)(x+10)=120
5
Раскройте скобки
4+103−(3+102)+2(−1)(+10)=120
x^{4}+10x^{3}-\left(x^{3}+10x^{2}\right)+2x(x-1)(x+10)=120x4+10x3−(x3+10x2)+2x(x−1)(x+10)=120
4+103−3−102+2(−1)(+10)=120
x^{4}+10x^{3}-x^{3}-10x^{2}+2x(x-1)(x+10)=120x4+10x3−x3−10x2+2x(x−1)(x+10)=120
6
Объедините подобные члены
Объедините подобные члены
4+103−3−102+2(−1)(+10)=120
x^{4}+{\color{#c92786}{10x^{3}}}{\color{#c92786}{-x^{3}}}-10x^{2}+2x(x-1)(x+10)=120x4+10x3−x3−10x2+2x(x−1)(x+10)=120
4+93−102+2(−1)(+10)=120
x^{4}+{\color{#c92786}{9x^{3}}}-10x^{2}+2x(x-1)(x+10)=120x4+9x3−10x2+2x(x−1)(x+10)=120
7
Раскройте скобки
4+93−102+2(−1)(+10)=120
x^{4}+9x^{3}-10x^{2}+{\color{#c92786}{2x(x-1)(x+10)}}=120x4+9x3−10x2+2x(x−1)(x+10)=120
4+93−102+2(+10)⋅2−2(+10)=120
x^{4}+9x^{3}-10x^{2}+{\color{#c92786}{2(x+10) \cdot x^{2}-2x(x+10)}}=120x4+9x3−10x2+2(x+10)⋅x2−2x(x+10)=120
8
Раскройте скобки
4+93−102+2(+10)⋅2−2(+10)=120
x^{4}+9x^{3}-10x^{2}+{\color{#c92786}{2(x+10) \cdot x^{2}}}-2x(x+10)=120x4+9x3−10x2+2(x+10)⋅x2−2x(x+10)=120
4+93−102+23+202−2(+10)=120
x^{4}+9x^{3}-10x^{2}+{\color{#c92786}{2x^{3}+20x^{2}}}-2x(x+10)=120x4+9x3−10x2+2x3+20x2−2x(x+10)=120
9
Раскройте скобки
4+93−102+23+202−2(+10)=120
x^{4}+9x^{3}-10x^{2}+2x^{3}+20x^{2}{\color{#c92786}{-2x(x+10)}}=120x4+9x3−10x2+2x3+20x2−2x(x+10)=120
4+93−102+23+202−22−20=120
x^{4}+9x^{3}-10x^{2}+2x^{3}+20x^{2}{\color{#c92786}{-2x^{2}-20x}}=120x4+9x3−10x2+2x3+20x2−2x2−20x=120
10
Объедините подобные члены
4+93−102+23+202−22−20=120
x^{4}+9x^{3}-10x^{2}+2x^{3}+{\color{#c92786}{20x^{2}}}{\color{#c92786}{-2x^{2}}}-20x=120x4+9x3−10x2+2x3+20x2−2x2−20x=120
4+93−102+23+182−20=120
x^{4}+9x^{3}-10x^{2}+2x^{3}+{\color{#c92786}{18x^{2}}}-20x=120x4+9x3−10x2+2x3+18x2−20x=120
Объедините подобные члены
4+93−102+23+182−20=120
x^{4}+{\color{#c92786}{9x^{3}}}-10x^{2}+{\color{#c92786}{2x^{3}}}+18x^{2}-20x=120x4+9x3−10x2+2x3+18x2−20x=120
4+113−102+182−20=120
x^{4}+{\color{#c92786}{11x^{3}}}-10x^{2}+18x^{2}-20x=120x4+11x3−10x2+18x2−20x=120
12
Объедините подобные члены
4+113−102+182−20=120
x^{4}+11x^{3}{\color{#c92786}{-10x^{2}}}+{\color{#c92786}{18x^{2}}}-20x=120x4+11x3−10x2+18x2−20x=120
4+113+82−20=120
x^{4}+11x^{3}+{\color{#c92786}{8x^{2}}}-20x=120x4+11x3+8x2−20x=120
Решение
4+113+82−20=120