Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
1 этап постановка задачи- найти стороны прямоугольника 2 этап составление математического описания изучаемого объекта - у нас геометрическая фигура четырехугольник , у которого все углы прямые и стороны попарно равны. Площадь прямоугольника ищется произведением его смежных сторон. 3 этап выбор метода решения уравнений математического описания и реализация его в форме моделирующей программы. Метод использован составления уравнения , зная части сторон прямоугольника 7 частей одна сторона, и 6 частей другая. Пусть х- это 1 часть, тогда 7х и 6х смежные стороны. Уравнение: 7х*6х=168 42х²=168 х²=168/42 х²=4 х=√4 х=2 7*2=14 одна сторона и 6*2=12 вторая сторона
Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
18/(20+х) + 20/(20-х) = 2
20 · (20 + х) + 18 · (20 - х) = 2 · (20 + х) · (20 - х)
400 + 20х + 360 - 18х = 2 · (20² - х²)
760 + 2х = 800 - 2х²
760 + 2х - 800 + 2х² = 0
2х² + 2х - 40 = 0
х² + х - 20 = 0
D = b² - 4ac = 1² - 4 · 1 · (-20) = 1 + 80 = 81
√D = √81 = 9
х₁ = (-1-9)/(2·1) = (-10)/2 = -5 (не подходит, так как < 0)
х₂ = (-1+9)/(2·1) = 8/2 = 4
ответ: 4 км/ч - скорость течения реки.
Проверка:
18/(20+4) + 20/(20-4) = 0,75 + 1,25 = 2 ч - время движения
2 этап составление математического описания изучаемого объекта - у нас геометрическая фигура четырехугольник , у которого все углы прямые и стороны попарно равны. Площадь прямоугольника ищется произведением его смежных сторон.
3 этап выбор метода решения уравнений математического описания и реализация его в форме моделирующей программы.
Метод использован составления уравнения , зная части сторон прямоугольника 7 частей одна сторона, и 6 частей другая. Пусть х- это 1 часть, тогда 7х и 6х смежные стороны. Уравнение: 7х*6х=168
42х²=168
х²=168/42
х²=4
х=√4
х=2
7*2=14 одна сторона и 6*2=12 вторая сторона