X^4 + x^3 - 18x^2 + ax + b = 0 Если корень уравнения рациональный x = m/n, то m - делитель свободного члена, n - делитель старшего коэффициента. Если корень целый, то это просто делитель свободного члена b. В данном случае старший коэффициент равен 1, поэтому все рациональные корни будут целыми. Рассмотрим два случая. 1) Число b - простое. Тогда возможные корни: 1; -1; b; -b. Подставляем эти корни: x = 1: 1 + 1 - 18 + a + b = 0; a = 16 - b x = -1: 1 - 1 - 18 - a + b = 0; a = b - 18 x = b; b^4 + b^3 - 18b^2 + a*b + b = 0; a = -b^3 - b^2 + 18b - 1 Чтобы найти а, мы разделили всё уравнение на b. Дальше будет тоже самое. x = -b; b^4 - b^3 - 18b^2 - a*b + b = 0; a = b^3 - b^2 - 18b + 1
2) Число b - составное, например, b = p*r. Тогда, кроме корней 1, -1, b, -b будут еще корни p, -p, r, -r. x = p: p^4 + p^3 - 18p^2 + a*p + p*r = 0; a = -p^3 - p^2 + 18p - r x = -p; p^4 - p^3 - 18p^2 - a*p + p*r = 0; a = p^3 - p^2 - 18p + r x = r: r^4 + r^3 - 18r^2 + a*r + p*r = 0; a = -r^3 - r^2 + 18r - p x = -r: r^4 - r^3 - 18r^2 - a*r + p*r = 0; a = r^3 - r^2 - 18r + p Если у составного числа b больше делителей, например, b = k*p*r*s, то будет тоже самое. Например, при x = k*r будет: x = kr: (kr)^4 + (kr)^3 - 18(kr)^2 + a*kr + kr*ps = 0; a = -(kr)^3 - (kr)^2 + 18kr - ps
a) х^2 + xy - x - ax + a - a = x^2+ xy - x - ax = x( x + y ) - x( 1 + a )
b) x^2 - 3x -x + 3 +3x -5 = x^2 - x - 2
d = 1 + 4*2 = 9
x_1 = (1 - 9) / 2 = -2 / 2 = -1
x_2 = (1 + 3) / 2 = 4 / 2 = 2
Если корень уравнения рациональный x = m/n, то m - делитель свободного члена, n - делитель старшего коэффициента.
Если корень целый, то это просто делитель свободного члена b.
В данном случае старший коэффициент равен 1, поэтому все рациональные корни будут целыми.
Рассмотрим два случая.
1) Число b - простое. Тогда возможные корни: 1; -1; b; -b.
Подставляем эти корни:
x = 1: 1 + 1 - 18 + a + b = 0; a = 16 - b
x = -1: 1 - 1 - 18 - a + b = 0; a = b - 18
x = b; b^4 + b^3 - 18b^2 + a*b + b = 0; a = -b^3 - b^2 + 18b - 1
Чтобы найти а, мы разделили всё уравнение на b.
Дальше будет тоже самое.
x = -b; b^4 - b^3 - 18b^2 - a*b + b = 0; a = b^3 - b^2 - 18b + 1
2) Число b - составное, например, b = p*r.
Тогда, кроме корней 1, -1, b, -b будут еще корни p, -p, r, -r.
x = p: p^4 + p^3 - 18p^2 + a*p + p*r = 0; a = -p^3 - p^2 + 18p - r
x = -p; p^4 - p^3 - 18p^2 - a*p + p*r = 0; a = p^3 - p^2 - 18p + r
x = r: r^4 + r^3 - 18r^2 + a*r + p*r = 0; a = -r^3 - r^2 + 18r - p
x = -r: r^4 - r^3 - 18r^2 - a*r + p*r = 0; a = r^3 - r^2 - 18r + p
Если у составного числа b больше делителей, например, b = k*p*r*s, то
будет тоже самое. Например, при x = k*r будет:
x = kr: (kr)^4 + (kr)^3 - 18(kr)^2 + a*kr + kr*ps = 0; a = -(kr)^3 - (kr)^2 + 18kr - ps