Без анализа здесь никак (хотя может и есть точнейшие методы решения таких задач). Прежде всего, думаем при каких значениях функция не существует. То есть найдем такие значения , при которых выражение не имеет смысла. Посмотрели на выражение, подумали и прикинули, что тут может быть где-то два варианта, при которых выражение не имеет смысла: 1) знаменатель обращается в нуль: Чтобы знаменатель обратился в нуль, нужно чтобы , однако понятно, что , значит знаменатель не обратиться в нуль. 2) выражение под корнем в знаменателе будет отрицательным (корень из отрицательного числа не имеет смысла)
Ага, имеем, что при любом значении функции не существует. То есть она идет от и куда-то дальше. Куда — нам пока неизвестно. Теперь посмотрим, что происходит с функцией при возрастании . Может быть она периодична?
Пока что видим, что функция убывает. Найдем пересечение с нулем. Для этого просто найдем , при котором числитель обратиться в нуль. Попробуем вместо повставлять разные значения (большие и маленькие).
Видим, что с увеличением уменьшается . Делаем вывод, что функция убывает бесконечно много. То есть — не существует, — не существует.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
1) знаменатель обращается в нуль:
Чтобы знаменатель обратился в нуль, нужно чтобы , однако понятно, что , значит знаменатель не обратиться в нуль.
2) выражение под корнем в знаменателе будет отрицательным (корень из отрицательного числа не имеет смысла)
Ага, имеем, что при любом значении функции не существует. То есть она идет от и куда-то дальше. Куда — нам пока неизвестно.
Теперь посмотрим, что происходит с функцией при возрастании . Может быть она периодична?
Пока что видим, что функция убывает. Найдем пересечение с нулем. Для этого просто найдем , при котором числитель обратиться в нуль.
Попробуем вместо повставлять разные значения (большие и маленькие).
Видим, что с увеличением уменьшается . Делаем вывод, что функция убывает бесконечно много. То есть — не существует, — не существует.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.