1)Две линейки стоят дороже тетради, это правильное утверждение, потому что если 1 тетрадка стоит как 1 линейка и карандаш, а линейка дороже карандаша, значит что 2 линейки дороже тетради.
2)Карандаш дороже тетради, это неправильное утверждение, потому что 1 тетрадь стоит как, 1 линейка и 1 карандаш
3)Карандаш дешевле линейки, это правильное утверждение, так как это записано в условии задачки
4)Линейка дороже тетради, это не правильное утверждение, так как 1 тетрадь стоит как, 1 линейка и 1 карандаш
Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
Объяснение:
1)Две линейки стоят дороже тетради, это правильное утверждение, потому что если 1 тетрадка стоит как 1 линейка и карандаш, а линейка дороже карандаша, значит что 2 линейки дороже тетради.
2)Карандаш дороже тетради, это неправильное утверждение, потому что 1 тетрадь стоит как, 1 линейка и 1 карандаш
3)Карандаш дешевле линейки, это правильное утверждение, так как это записано в условии задачки
4)Линейка дороже тетради, это не правильное утверждение, так как 1 тетрадь стоит как, 1 линейка и 1 карандаш
ответ: 1), 3)
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3 (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у = 2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)