В ящике 10 деталей, 3 из которых бракованные. Наудачу вынимают два изделия. Найти вероятность того, что оба изделия бракованные, если первое изделие: а) возвращается в ящик; б) в ящик не возвращается.
Объяснение:1)Бросают игральный кубик Определите вероятность появления на верхней грани: а) числа 1; общее число исходов в задаче n=6. Решаем все по формуле: Р(А)=m/n, благоприятных исходов m, число всех исходов n.
Число 1 встречается только один раз на кубике - значит число благоприятных исходов 1
б)числа 2; Число 2 встречается только один раз на кубике - значит число благоприятных исходов 1
P=1/6≈0,16(6) - вероятность того,что выпадет число 2.
в) нечетного числа; общее число исходов в задаче n=6. Благоприятствуют событию только такие исходы, когда выпадет грань с 1, 3 или 5 очками (только ytчетные), таких граней m=3. Тогда искомая вероятность равна P=3/6=1/2=0.5.
г)числа 1 или 2; Если при бросании игрального кубика выпало 1 или 2, т.е. удовлетворяют 2 исхода, m=2. Нужная вероятность равна P=2/6=1/3=0.333.
д) числа 8; благоприятный исход отсутствует (числа 8 нет на кубике), значит m=0, поэтому Р=0/6 =0
е) числа 1 или 2 или 3 или 4 или 5 или 6 . Благоприятных исходов может быть 6, значит m=6, тогда P=6/6=1.
2)подбрасывают монету. Определите вероятность выпадения: а) орла / Общее количество исходов n=2, благопрятный исход m=1, тогда Р=1/2=0,5
б) решки / Общее количество исходов n=2, благопрятный исход m=1, тогда Р=1/2=0,5
в)Орла и решки / Благоприятных исходов может быть 2, значит m=2, тогда P=2/2=1/.
г)ни Орла ни решки /благоприятный исход отсутствует , значит m=0, поэтому Р=0/2 =0
3)Из ящика Где находится 4 черных и 5 белых шаров вынимают Один шар .Какова вероятность того что вынут:
а) черный шар / m=4+5=9, n=4, Р=4/9
б) белый шар / m=4+5=9, n=5, Р=5/9
4) из 28 костей Домино выбирают наугад одну кость. Какова вероятность выбрать с суммы очков:
а) 0
б) 4
в)7
г) 13
5)Бросают два игральных кубика .Какова вероятность выпадения суммы чисел равной: Всего таких пар чисел будет n=6⋅6=36
а) 3 / Число 3 может выпасть 2 раза, значит Р=2/36=1/18
б) 9 / Число 9 может выпасть 4 раза, значит Р=4/36=1/9
в) 12 / Число 12 может выпасть 1 раз, значит Р=1/36
г)14 / Число 14 не может выпасть, m=0, значит Р=0/36=0
6)выполняет тест по математике ученик не успевает в определённое время выполнить одно задание Какова вероятность того что ученик угадать правильный ответ если из 5 возможных ответов только один правильный и выбор каждого из ответов события равновозможные? Р=1/5=0,2
7) ученик задумал однозначное натуральное число другой ученик пытается его отгадать. Какова вероятность угадать число с первой попытки? / Всего однозначных натуральных чисел 9 (1, 2, 3, ..,9), значит Р=1/9
Ну и ещё переходим к старшему разряду тысяч (в обратном порядке):
сумма: 4 + 8 = 12 , у квадрата вдвое больше.
сумма: 4 + 8 = 12 , у квадрата вдвое больше.
сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
А теперь всё обобщим на самый общий случай.
Если бы число записывалось единицей с R нолями, то его квадрат содержал бы уже 2R нолей, при этом в исходном числе было бы (R+1) цифр, а в квадрате числа – (2R+1) цифр.
Пусть у нас старший разряд таков, что во всём числе только R цифр, рассмотрим всё, как обычно в обратном порядке:
( 99999 : : : R цифр : : : 99999 ) – это число на единицу меньше, чем число ( 100000 : : : R нулей : : : 00000 ) , в котором (R+1) цифр.
квадрат числа [( 99999 : : : R цифр : : : 99999 )] – это число, меньшее, чем число ( 100000 : : : 2R нулей : : : 00000 ) , в котором (2R+1) цифр.
Значит, квадрат числа ( 99999 : : : R цифр : : : 99999 ) содержит ровно 2R цифр, а всего само число и его квадрат содержат 3R цифр.
в числе ( 400000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 400000 : : : (R–1) нулей : : : 00000 )] = = ( 1600000 : : : (2R–2) нулей : : : 00000 ) содержит 2R цифр, а всего само число и его квадрат содержат 3R цифр.
в числе ( 300000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 300000 : : : (R–1) нулей : : : 00000 )] = = ( 900000 : : : (2R–2) нулей : : : 00000 ) содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.
в числе ( 100000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 100000 : : : (R–1) нулей : : : 00000 )] = = ( 100000 : : : (2R–2) нулей : : : 00000 ) содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.
И так будет для любого R
R = 1 : : : сумма: 3R = 3 или (3R–1) = 2 . R = 2 : : : сумма: 3R = 6 или (3R–1) = 5 . R = 3 : : : сумма: 3R = 9 или (3R–1) = 8 . R = 4 : : : сумма: 3R = 12 или (3R–1) = 11 . R = 5 : : : сумма: 3R = 15 или (3R–1) = 14 .
. . .
R = 32 : : : сумма: 3R = 96 или (3R–1) = 95 . R = 33 : : : сумма: 3R = 99 или (3R–1) = 98 . R = 34 : : : сумма: 3R = 102 или (3R–1) = 101 . R = 35 : : : сумма: 3R = 105 или (3R–1) = 104 .
В самом деле, между предыдущим и последующим значениями, кратными трём, всегда содержатся два целые числа, а искомой суммой, помимо 3R, может быть только одно из них: (3R–1) .
Поэтому, значения, подчиняющиеся закону (3R+1) не могут быть искомым результатом. Так, например, число 99 – кратно трём ( 99 = 3*33 ), а значит, число 100 = 3*33+1 никак не могло бы оказаться в расчётах Лены.
О т в е т : у Лены не могли получиться результаты, подчиняющиеся закону (3R+1) , где R – какое угодно целое число.
ну и, конечно, все результаты Лены могут быть только положительными, поскольку это количества, т.е. натуральные величины.
Объяснение:1)Бросают игральный кубик Определите вероятность появления на верхней грани: а) числа 1; общее число исходов в задаче n=6. Решаем все по формуле: Р(А)=m/n, благоприятных исходов m, число всех исходов n.
Число 1 встречается только один раз на кубике - значит число благоприятных исходов 1
P=1/6≈0,16(6) - вероятность того,что выпадет 1 очко.
б)числа 2; Число 2 встречается только один раз на кубике - значит число благоприятных исходов 1
P=1/6≈0,16(6) - вероятность того,что выпадет число 2.
в) нечетного числа; общее число исходов в задаче n=6. Благоприятствуют событию только такие исходы, когда выпадет грань с 1, 3 или 5 очками (только ytчетные), таких граней m=3. Тогда искомая вероятность равна P=3/6=1/2=0.5.
г)числа 1 или 2; Если при бросании игрального кубика выпало 1 или 2, т.е. удовлетворяют 2 исхода, m=2. Нужная вероятность равна P=2/6=1/3=0.333.
д) числа 8; благоприятный исход отсутствует (числа 8 нет на кубике), значит m=0, поэтому Р=0/6 =0
е) числа 1 или 2 или 3 или 4 или 5 или 6 . Благоприятных исходов может быть 6, значит m=6, тогда P=6/6=1.
2)подбрасывают монету. Определите вероятность выпадения: а) орла / Общее количество исходов n=2, благопрятный исход m=1, тогда Р=1/2=0,5
б) решки / Общее количество исходов n=2, благопрятный исход m=1, тогда Р=1/2=0,5
в)Орла и решки / Благоприятных исходов может быть 2, значит m=2, тогда P=2/2=1/.
г)ни Орла ни решки /благоприятный исход отсутствует , значит m=0, поэтому Р=0/2 =0
3)Из ящика Где находится 4 черных и 5 белых шаров вынимают Один шар .Какова вероятность того что вынут:
а) черный шар / m=4+5=9, n=4, Р=4/9
б) белый шар / m=4+5=9, n=5, Р=5/9
4) из 28 костей Домино выбирают наугад одну кость. Какова вероятность выбрать с суммы очков:
а) 0
б) 4
в)7
г) 13
5)Бросают два игральных кубика .Какова вероятность выпадения суммы чисел равной: Всего таких пар чисел будет n=6⋅6=36
а) 3 / Число 3 может выпасть 2 раза, значит Р=2/36=1/18
б) 9 / Число 9 может выпасть 4 раза, значит Р=4/36=1/9
в) 12 / Число 12 может выпасть 1 раз, значит Р=1/36
г)14 / Число 14 не может выпасть, m=0, значит Р=0/36=0
6)выполняет тест по математике ученик не успевает в определённое время выполнить одно задание Какова вероятность того что ученик угадать правильный ответ если из 5 возможных ответов только один правильный и выбор каждого из ответов события равновозможные? Р=1/5=0,2
7) ученик задумал однозначное натуральное число другой ученик пытается его отгадать. Какова вероятность угадать число с первой попытки? / Всего однозначных натуральных чисел 9 (1, 2, 3, ..,9), значит Р=1/9
(в обратном порядке):
сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа вдвое больше количества цифр исходного числа.
искомая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же вдвое больше количества цифр исходного.
искомая сумма: 1 + 1 = 2 , количество цифр у квадрата равно количеству цифр исходного.
искомая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного.
Теперь переходим к старшему разряду десятков
(в обратном порядке):
сумма: 2 + 4 = 6 , количество цифр у квадрата вдвое больше количества цифр исходного.
сумма: 2 + 4 = 6 , цифр у квадрата всё так же вдвое больше количества цифр исходного.
сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 4–1 .
сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 4–1 .
Далее переходим к старшему разряду сотен
(в обратном порядке):
сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.
сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.
сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .
сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .
Ну и ещё переходим к старшему разряду тысяч
(в обратном порядке):
сумма: 4 + 8 = 12 , у квадрата вдвое больше.
сумма: 4 + 8 = 12 , у квадрата вдвое больше.
сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
А теперь всё обобщим на самый общий случай.
Если бы число записывалось единицей с R нолями, то его квадрат содержал бы уже 2R нолей, при этом в исходном числе было бы (R+1) цифр, а в квадрате числа – (2R+1) цифр.
Пусть у нас старший разряд таков, что во всём числе только R цифр, рассмотрим всё, как обычно в обратном порядке:
( 99999 : : : R цифр : : : 99999 ) – это число на единицу меньше, чем число ( 100000 : : : R нулей : : : 00000 ) , в котором (R+1) цифр.
квадрат числа [( 99999 : : : R цифр : : : 99999 )] – это число, меньшее, чем число ( 100000 : : : 2R нулей : : : 00000 ) , в котором (2R+1) цифр.
Значит, квадрат числа ( 99999 : : : R цифр : : : 99999 ) содержит ровно 2R цифр, а всего само число и его квадрат содержат 3R цифр.
в числе ( 400000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 400000 : : : (R–1) нулей : : : 00000 )] =
= ( 1600000 : : : (2R–2) нулей : : : 00000 ) содержит 2R цифр, а всего само число и его квадрат содержат 3R цифр.
в числе ( 300000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 300000 : : : (R–1) нулей : : : 00000 )] =
= ( 900000 : : : (2R–2) нулей : : : 00000 ) содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.
в числе ( 100000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 100000 : : : (R–1) нулей : : : 00000 )] =
= ( 100000 : : : (2R–2) нулей : : : 00000 ) содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.
И так будет для любого R
R = 1 : : : сумма: 3R = 3 или (3R–1) = 2 .
R = 2 : : : сумма: 3R = 6 или (3R–1) = 5 .
R = 3 : : : сумма: 3R = 9 или (3R–1) = 8 .
R = 4 : : : сумма: 3R = 12 или (3R–1) = 11 .
R = 5 : : : сумма: 3R = 15 или (3R–1) = 14 .
. . .
R = 32 : : : сумма: 3R = 96 или (3R–1) = 95 .
R = 33 : : : сумма: 3R = 99 или (3R–1) = 98 .
R = 34 : : : сумма: 3R = 102 или (3R–1) = 101 .
R = 35 : : : сумма: 3R = 105 или (3R–1) = 104 .
... и т.д и т.п. ...
Как легко видеть, в этой последовательности:
2, 3, 5, 6, 8, 9, 11, 12, 14, 15 .... 95, 96, 98, 99, 101, 102, 104, 105 ....
пропущены определённые числа. Пропущенные числа:
1, 4, 7, 10, 13, 16 .... 94, 97, 100, 103, 106 ....
подчиняются закону (3R+1).
В самом деле, между предыдущим и последующим значениями, кратными трём, всегда содержатся два целые числа, а искомой суммой, помимо 3R, может быть только одно из них: (3R–1) .
Поэтому, значения, подчиняющиеся закону (3R+1) не могут быть искомым результатом. Так, например, число 99 – кратно трём ( 99 = 3*33 ), а значит, число 100 = 3*33+1 никак не могло бы оказаться в расчётах Лены.
О т в е т : у Лены не могли получиться результаты, подчиняющиеся закону (3R+1) , где R – какое угодно целое число.
ну и, конечно, все результаты Лены могут быть только положительными, поскольку это количества, т.е. натуральные величины.
в частности, у неё не могло получиться число 100.