В ящике имеются a, b, c и d белых, черных, красных и синих шаров соответственно. Из ящика извлекают последовательно два шара без
возврата. Найти энтропию, связанную с первым и вторым извлечениями, а
также энтропию обоих извлечений. при
a = b = 2, c = 4, d = 8
Функция f(x) задается системой:
{ f(x) = x + 3 ; при x < 0
{ f(x) = (x - 1)(x - 3) ; при 0 < x < 5
{ f(x) = -x + 13 ; при x > 5
При некотором k уравнение f(x) = k(x + 3) имеет ровно 3 корня.
Решение. Прямая y = k(x + 3) проходит через точку (-3; 0).
При любом k она будет пересекать две прямых, при x < 0 и при x > 5.
При k = 1 она совпадает с прямой f(x) = x + 3, тогда уравнение имеет бесконечное количество корней.
Ровно 3 корня будет, если эта прямая проходит через вершину параболы.
M0(2; -1).
Уравнение прямой через 2 точки:
(x + 3) / (2 + 3) = (y - 0) / (-1 - 0)
(x + 3)/5 = y/(-1)
y = -1/5*(x + 3)
k = -1/5
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)