В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
elmaz5
elmaz5
22.05.2023 14:12 •  Алгебра

В ящику лежать 8 білих кульок,3 чорні кульки і 9 синіх кульок.Навмання виймають одну кульку.Яка ймовірність того що вона:
1)чорна
2)не біла?

Показать ответ
Ответ:
SmartJager
SmartJager
26.02.2020 17:37
Задание 1.
Ранжированный ряд: 157, 160, 160, 161, 162, 162, 165, 165, 165, 165, 165, 168, 169, 170, 170, 170, 171, 173, 173, 174, 175, 177, 177, 182, 182, 186.
Средний рост: (157 + 160 + 160 ++ 186) : 26 ≈ 169
Мода ряда: 165
Медиана ряда: (170 + 175) : 2 = 172,5

Задание 2.
Среднее арифметическое: (100 000 + 4 * 20 000 + 20 * 10 000) : 25 = 15200
Мода ряда: 10 000
Медиана ряда: (10 000 + 10 000) : 2 = 10 000
В рекламных целях выгоднее всего использовать среднее арифметическое ряда.

Задание 3.
Сумма чисел старого ряда равна 7 * 10 = 70.
Новый ряд состоит из 10 + 2 = 12 чисел.
Среднее арифметическое нового ряда: (70 + 17 + 18) : 12 = 8,75
0,0(0 оценок)
Ответ:
timursharipov2
timursharipov2
19.04.2023 19:45

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота