В замкнутой биосистеме наблюдается вид насекомых. В момент начала наблюдения размер популяции составлял 2000 особей. В среднем за год наблюдается прирост популяции 40 особей на одну имеющуюся. Конкурентная борьба характеризуется квадратичной зависимостью от существующих особей, за год из-за нее из 10 особей гибнет 5. Составьте дифференциальное уравнение зависимости размера популяции от времени. Определите время достижения двукратного увеличения наблюдаемой популяции.
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное)
Применим метод Эйлера
Пусть , тогда подставив в однородное уравнение, получаем характеристическое уравнение
Корни которого
Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное)
отсюда
где - многочлен степени х
Сравнивая с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде:
уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
уч.н.
Запишем общее решение исходного уравнения
- ответ
mв = 5 кг
t₁ = 15°C
t₂ = 100°C
Q ---? кДж
Решение.
Q = c*m*(t₂ -t₁), где m - масса,кг; t₂ и t₁ - конечная и начальная температуры,°С; с - удельная теплоемкость вещества, Дж/(кг*°С)
При нагревании воды тепло тратится также и на нагревание железного котла.
Q = Qж + Qв
Поскольку в задании не приведены удельные теплоемкости, берем
сж = 460Дж/(кг*°С) ; св = 4200Дж/(кг*°С),
t₂ -t₁ = 100 - 15 = 85 (°C) ( расчет ведем в градусах Цельсия).
Q = 460 * 1,5 * 85 + 4200 * 5 * 85 = (690 + 21000) *85 = 21690 * 85 = 1843650 (Дж) = 1843,65 (кДж)
ответ; 1843,65 кДж