в землю вертикально врыт столб из некоторой точки на земле он виден под углом φ. Из какой еще точки на земле он виден под тем же углом? Какую фигуру образуют все вместе такие точки
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
1) Обозначим за х км/ч — собственную скорость катера (ее скорость в стоячей воде), х > 0.
2) Тогда (х + 2) км/ч — скорость катера при движении по течению реки.
3) (60 : (х + 2)) часов шел катер по реке, (36 : х) часов — по озеру.
4) (60 : (х + 2) + 36 : х) часов ушло у катера на весь путь.
5) По условию задачи весь путь занял 5 часов, поэтому запишем равенство:
60 : (х + 2) + 36 : х = 5.
6) Решаем уравнение:
60х + 36 * (х + 2) = 5х * (х + 2);
60х + 36х + 72 = 5х^2 + 10х;
5х^2 - 86х - 72 = 0.
D = (-86)^2 - 4 * 5 * (-72) = 8836.
х1 = -0,8, х2 = 18.
7) х = 18 км/ч — собственная скорость катера
ответ: 18 км/ч.
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.