В1. Выполняя умножения степеней, ученик допустил одну ошибку. Найдите ее и исправьте, решив пример правильно. а)x4х3=x7 б)у?•ys=y? в)у°уз-уз г)у •y=y x, x5 В2. Упростите выражение: а) х б) a5 аз
B3.Возведите в степень: а)(х2)3; б)(х4) ; в)(y2)45 г)(a+b). Д) (4х2)
Объяснение:
Графиком функции является парабола;
множитель при х² меньше нуля - ветви вниз.
Область определения: значение функции (у) может быть определено для любого значения аргумента (х)
D(y) = R
Точки экстремума (точки, в которых производная обращается в 0 или не определена:
y' = (-x^2+4)' \\ y'=-2x +0 =-2x
Найдем значение х для у'=0
Для любого х > 0 у < 4
Для любого х < 0 у < 4
Точка (0;4) - точка максимума фунции.
Нижняя граница области значений функции отсутствует.
Следовательно, Область значений функции
E(y): y \in (- \inf ; 4]
2) Умножить, не обращая внимания на запятую. В произведении отделить запятой столько цифр справа, сколько их после запятой в обоих множителях вместе.
3) Сперва переместить вправо запятую в делимом и делителе на столько цифр, сколько их в делителе справа от запятой. Делитель должен стать целым числом. Выполняем деление, не забывая поставить в частном запятую после получения остатка целой части. Если в делимом цифры кончились, то дополняем нулями пустующие разряды в целой части.