в2. вычислите значение выражения а — b+c, если a = -2 b = -3 : 0,6, с = 1,5 сі. составьте выражение по условию : «ширина прямоугольника а см, а длина на 15 см меньше. чему равен его периметр? »
Предположим, что искомое число состоит из трех и более цифр, тогда мы получим следующее выражение (для трехзначного числа):
Это равенство не выполняется ни при каких значениях a, b, c. Однозначным искомое число не может быть, поскольку после отбрасывания цифры ничего не останется. Остается вариант - искомое число состоит из двух цифр. Получаем следующее выражение:
Нас устраивают таких однозначные значения a, при которых получаются однозначные значения b:
Таким образом, получаем всего два числа: 14 и 28. ответ: 2
Пусть х - время, за которое Иван может вспахать все поле.
Тогда х+5 - время, за которое все поле может вспахать Григорий.
Примем всю площадь поля за 1.
Тогда 1/х - производительность Ивана.
1/(х+5) - производительность Григория.
1/х + 1/(х+5) - производительность Ивана и Григория, работающих вместе что соответствует 1/6.
Уравнение
1/х + 1/(х+5) = 1/6
Умножим обе части неравенства на 6х(х+5), чтобы избавиться от знаменателей.
6х(х+5)/х + 6х(х+5)/(х+5) = 6х(х+5)/6
6(х+5) + 6х = х(х+5)
6х+30 + 6х = + х^2 + 5х
х^2 - 7х - 30 = 0
D = 49 -4(-30) = 49 + 120 = 169
√D = √169 = 13
x1 = (7-13)/2 = -6/2 = -3 - не походит, поскольку время не может отрицательным.
х2 = (7+13)/2 = 20/2 = 10 часов - время, за которое Иван вспашет все поле.
ответ: 10 часов
Проверка
1) 1:10= 1/10 - производительность Ивана.
2) 1:6 = 1/6 - производительность Ивана и Григория, работающих вместе.
3) 1/6 - 1/10 = 5/30 - 3/30 = 2/30 = 1/15 - производительность Григория.
4/ 1 : 1/15 = 15 часов- за такое время Григория может выполнить всю работу.
5) 15-10=5 часов - на столько часов Иван выполнит работу раньше, чем Григорий.
Подробнее - на -
Объяснение:
Это равенство не выполняется ни при каких значениях a, b, c.
Однозначным искомое число не может быть, поскольку после отбрасывания цифры ничего не останется.
Остается вариант - искомое число состоит из двух цифр. Получаем следующее выражение:
Нас устраивают таких однозначные значения a, при которых получаются однозначные значения b:
Таким образом, получаем всего два числа: 14 и 28.
ответ: 2