Ясно, что если это сосуд, и его нужно заполнить полностью, то вершина его внизу - это сосуд вроде бокала. В противном случае через вершину конусовидный сосуд не заполнить до конца. Поскольку речь идет об одном и том же сосуде, полный его объем и объем заполненной части - подобные тела. Отношение объемов подобных тел равно кубу отношений их линейных размеров, т.е. кубу коэффициента подобия. Если высота заполненной части сосуда равна h, а полной - Н, то k=Н:h=2 V:V₁=k³= 2³=8 V=8*V₁=560 мл Долить нужно V-V₁=560-70=490 мл
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z
Поскольку речь идет об одном и том же сосуде, полный его объем и объем заполненной части - подобные тела. Отношение объемов подобных тел равно кубу отношений их линейных размеров, т.е. кубу коэффициента подобия.
Если высота заполненной части сосуда равна h, а полной - Н, то
k=Н:h=2
V:V₁=k³= 2³=8
V=8*V₁=560 мл
Долить нужно
V-V₁=560-70=490 мл