Строим прямую у=х-1 Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет Проверим, какой из них принадлежит (0;0) 0-0≤1 - верно. Значит условию удовлетворяет та часть, которой принадлежит точка (0;0) См. рис. 1
2у²=1 у²=1/2 у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы. Проверяем точку (0;0) 1-2·0<0 - неверно. Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0). См. рис.2
Системе x-y<=1; 1-2y²<0 удовлетворяет пересечение двух областей ( см. рис. 3)
Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)
Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет
Проверим, какой из них принадлежит (0;0)
0-0≤1 - верно.
Значит условию удовлетворяет та часть, которой принадлежит точка (0;0)
См. рис. 1
2у²=1
у²=1/2
у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы.
Проверяем точку (0;0)
1-2·0<0 - неверно.
Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0).
См. рис.2
Системе
x-y<=1;
1-2y²<0
удовлетворяет пересечение двух областей ( см. рис. 3)