В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
AlexGood21
AlexGood21
15.01.2022 07:04 •  Алгебра

Вариант 1 1. Вычислите производные:
1) f(x)=7х5 – 8х – 4 + 12
2) f(x)=cos5x – sin
3) f(x)=4
4) f(x)=
5) f(x)=
2. Тело движется по закону s(t)=2t3 – 3t2. Найти мгновенную скорость тела при t=5 с.
3. Написать уравнение касательной к графику функции:
y = х – 2х2 в точке х0= - 3
4. Найти промежутки монотонности функции:
1) у = ; 2) у = 4х3 – х5
5. Найти экстремумы функции:
1) у = 3х3 – 2х2 + 1 ; 2) у = 3х – 5х2
6. Найти наименьшее и наибольшее значения функции на отрезке:
у = х3 – 3х + 1 на [- 3; 0]

Показать ответ
Ответ:
ilychshetebyaa
ilychshetebyaa
10.01.2021 03:27
1) чтобы узнать проходит ли график функции через обозначенные точки, необходимо для начала указанные координаты подставить в уравнение. как? например 1я точка А (3;0). 3 - это х, 0 - это у. проверяем:
0 = -2*3 + 3
0 неравен -3; то есть график функции не проходит через эту точку. если бы обе части уравнения были равны друг другу, то тогда бы проходил.
2) чтобы найти точки пересечения графиков с осями координат, нужно решить уравнения функций, где сначала х = 0, затем у.
то есть 1) 2х - 6у = 10
2*0 - 6у = 10
-6у = 10
у = - 1 целая 2/3
точка пересечения с осью ох (0; -1 целая 2/3)
затем ищем точку пересечения с осью оу:
2х -6*0 = 10
2х = 10
х = 5
(5;0)
0,0(0 оценок)
Ответ:
egorfeklistov
egorfeklistov
10.06.2022 10:19
1) y=sin x, y=cos x, x=-5π/4, x=π/4.
Заданный отрезок графиками функций разбивается на 2 участка: левая часть - от заданного предела x=-5π/4 до точки встречи графиков, где график функции синуса выше графика косинуса.
Направо от этой точки график синуса выше графика косинуса.
Это определяет площадь как сумма интегралов разностей функций.
Точка встречи - это значение (-π+(π/4)) = -3π/4.
S= \int\limits^{- \frac{3 \pi }{4} }_{- \frac{5 \pi }{4} } {(sin(x)-cos(x))} \, dx + \int\limits^{- \frac{ \pi }{4} }_{- \frac{3 \pi }{4} } {(cos(x)-sin(x))} \, dx.
Значения аргумента в заданных пределах:
-1.25π =  -3.92699,
-0.75π =  -2.35619,
 0.25π =  0.785398.
Значения функции синуса в заданных пределах:
0.707107,    -0.70711,   0.707107. (это +-√2/2)
Значения функции косинуса в заданных пределах:
-0.70711,    -0.70711,    0.707107.  (это +-√2/2)
Значения функции косинуса в заданных пределах:
Площадь равна  1.414214 + 2.828427 = 4.242641 = 3√2.

2) y=-x^2-2x+4, y=-x^2+4x+1, y=5.
Заданный отрезок графиками функций разбивается на 2 участка, граничные точки которых надо определить.
Средняя точка - равенство функций y=-x^2-2x+4, y=-x^2+4x+1.
-x^2 - 2x + 4 = -x^2 + 4x + 1,
6х = 3,
х = 3/6 = 1/2.
Левая точка - равенство y=-x^2-2x+4, y=5
-x^2 - 2x + 4 = 5.
-x^2 - 2x -1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*(-1)*(-1)=4-4*(-1)*(-1)=4-(-4)*(-1)=4-(-4*(-1))=4-(-(-4))=4-4=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-(-2/(2*(-1)))=-(-2/(-2))=-(-(-2/2))=-(-(-1))=-1. 
Правая точка - равенство y=-x^2+4x+1, y=5.
-x^2 + 4x + 1 = 5.
-x^2 + 4x - 4 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=4^2-4*(-1)*(-4)=16-4*(-1)*(-4)=16-(-4)*(-4)=16-(-4*(-4))=16-(-(-4*4))=16-(-(-16))=16-16=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2. Линия у = 5 находится выше парабол.
Площадь равна:
S= \int\limits^{ \frac{1}{2} }_{-1} {(x^2+2x+1)} \, dx + \int\limits^2_{ \frac{1}{2} } {(x^2-4x+4)} \, dx = \frac{x^3}{3}+ \frac{2x^2}{2}+x|_{-1}^{ \frac{1}{2} }+ \frac{x^3}{3}- \frac{4x^2}{2}+4x|_{ \frac{1}{2} }^2= \frac{9}{4}=2,25.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота