14;14
Объяснение:
Дан числовой ряд: 21, 14, 8, 14, 13, 10, 14, 8, 13, 15, 24.
Найдите среднее арифметическое и медиану этого ряда.
Среднее арифметическое = (21+14+8+14+13+10+14+8+13+15+24)/11= 14
Упорядочим ряд по возрастанию:
8, 8, 10, 13, 13, 14, 14, 14, 15, 21 , 24
Поскольку количество чисел в ряду нечётное, то число 14 стоящее по середине и будет являться медианой данного ряда.
Если бы количество чисел в ряду было бы чётное, то медиана этого ряда будет равна полусумме двух средних чисел.
отметь как лучшее
-3.
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
14;14
Объяснение:
Дан числовой ряд: 21, 14, 8, 14, 13, 10, 14, 8, 13, 15, 24.
Найдите среднее арифметическое и медиану этого ряда.
Среднее арифметическое = (21+14+8+14+13+10+14+8+13+15+24)/11= 14
Упорядочим ряд по возрастанию:
8, 8, 10, 13, 13, 14, 14, 14, 15, 21 , 24
Поскольку количество чисел в ряду нечётное, то число 14 стоящее по середине и будет являться медианой данного ряда.
Если бы количество чисел в ряду было бы чётное, то медиана этого ряда будет равна полусумме двух средних чисел.
отметь как лучшее
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.