Вариант 2 1. Функция задана формулой у = 4х – 30. Определите:
а) значение у, если х = –2,5;
б) значение х, при котором у = –6;
в) проходит ли график функции через точку В (7; –3).
2. а) Постройте график функции у = –3х + 3.
б) Укажите с графика, при каком значении х значение у равно 6.
3. В одной и той же системе координат постройте графики функций:
а) у = 0,5х; б) у = –4.
4. Найдите координаты точки пересечения графиков функций
у = –38х + 15 и у = –21х – 36.
5. Задайте формулой линейную функцию, график которой параллелен прямой у = –5х + 8 и проходит через начало координат.
Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3
1) стороны прямоугольника a₁ = 1 см b₁ = 13 см
2) стороны прямоугольника a₂ = 6 см b₂ = 8 см
Объяснение:
а - меньшая сторона прямоугольника
b - большая сторона прямоугольника
2a + 2b = 28 - периметр прямоугольника
а + b = 14
b = 14 - a (1)
ab - площадь прямоугольника
а² - площадь квадрата
ab - a² = 12 (2)
Подставим (1) в (2)
а · (14 - а) - а² = 12
14а - а² - а² = 12
2а² - 14а + 12 = 0
а² - 7а + 6 = 0
D = 7² - 4 · 6 = 25
√D = 5
a₁ = 0.5(7 - 5) = 1 (см) b₁ = 14 - 1 = 13 (см)
a₂ = 0.5(7 + 5) = 6 (см) b₂ = 14 - 6 = 8 (см)