Вариант 2 1. Разложите на множители:
1) 27x3 − y3; 3) −3x2 − 12x − 12;
2) 25a3 − ab2; 4) 3ab − 15a + 12b − 60; 5) a4 − 625.
2. Упростите выражение x(x − 1)(x + 1) − (x − 2)(x2 + 2x + 4).
3.Разложите на множители:
1) 7m − n + 49m2 − n2; 3) xy4 − 2y4 – xy + 2y;
2) 4x2 − 4xy + y2 − 16; 4) 9 − x2 − 2xy − y2.
4. Решите уравнение:
1) 5x3 − 5x = 0; 2) 64x3 − 16x2 + x = 0; 3) x3 − 3x2 − 4x + 12 = 0.
5. Докажите, что значение выражения 46 − 73 делится нацело на 9.
6. Известно, что a + b = 4, ab = −6. Найдите значение выражения (a − b)2.
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
а)
4 а - в а - 5 в
+ =
12 а(в 2 ст.) 15 а в(в 2 ст.)
4а-в+а-5в/12 а в2=
5а-в/12ав2
б)
m + 4 m + 6
- =
m m + 2
(m+4)(m+2)-m(m+6)/m(m+2)=
m2+2m+4m+8-m2-6m/m(m+2)=
8/m(m+2)
в)
у + 3 у - 3
- =
4 у (у - 3) 4 у (у + 3)
(у+3)2-(у-3)2/4 у (у + 3)(у - 3)=
(у+3-у+3)(у+3+у+3)/4у(у2-9)=
6(2у+6)/4у(у2-9)=
12(у+3)/4у(у-3)(у+3)=
12/4у(у-3)=
3/у(у-3)
г) 5 - 4 у 4
+ =
у(в 2 ст.) - 6 у у - 6
5-4у+4у/у(у-6)=
5/у(у-6)