1 область определения находим из условия 3-2х-х²≥0
-3+2х+х²≥0, по теореме, обратной теореме Виета, левая часть имеет корни х=1, х=-3, и левая часть раскладывается на линейные множители (х-1)*(х+3)≤0, мтеодом интервалов находим
____-3_______1_________
+ - +
т.е. область определения [-3;1]
Область значений - все неотрицательные действительные числа.
Наименьшее значение равно нулю.
Найдем критические точки, для чего ищем производную
f'(x)=(1/2√(3-2х-х²))*(-2x-2)
Производная равна нулю, если х=-1, Исследуем функцию на максимум, минимум и экстремум
_-3_______-1_______1_____
+ -
Значит, -1- точка максимума, максимум равен √(3-2*(-1)-(-1)²)=√4=2
При переходе через критическую точку знак производной меняется с плюса на минус, значит, на промежутке [-3 ;-1] функция возрастает, а на промежутке [-1 ;1] функция убывает.
Пусть x - количество олимпиад в 7-м классе
3x - количество олимпиад в 11-м классе
Определим допустимое значение x
x /= 1, поскольку в таком случае между x и 3x недостаточно чисел
x /= 2, поскольку при наибольшем раскладе остальных терминов общая сумма < 31 (2+6+3+4+5=20), т.е. в любом случае не можем набрать 31
x /= 4, поскольку при наименьшем раскладе остальных терминов общая сумма > 31, т.е. в любом случае набираем больше, чем 31: 4+16+5+6+7
x /= 5, поскольку при наименьшем раскладе остальных терминов общая сумма > 31, т.е. в любом случае набираем больше, чем 31: 5+25+6+7+8
Таким образом, Настя в 7-м классе могла участвовать только в 3-х олимпиадах, а в 11-м — в 9.
Количество олимпиад в 10 классе (назовем его y) больше 5, но меньше 9 в связи с возрастающим кол-вом олимпиад в каждом последующем классе: 5<y<9.
y /= 6, поскольку в данном случае единственная возможная сумма не равняется 31: 3+4+5+6+9=27
Остаются два варианта. y=7 также легко рассмотреть перебором:
1. 3+4+5+7+9=28
2. 3+4+6+7+9=29
3. 3+5+6+7+9=30
Таким образом, y=8
1 область определения находим из условия 3-2х-х²≥0
-3+2х+х²≥0, по теореме, обратной теореме Виета, левая часть имеет корни х=1, х=-3, и левая часть раскладывается на линейные множители (х-1)*(х+3)≤0, мтеодом интервалов находим
____-3_______1_________
+ - +
т.е. область определения [-3;1]
Область значений - все неотрицательные действительные числа.
Наименьшее значение равно нулю.
Найдем критические точки, для чего ищем производную
f'(x)=(1/2√(3-2х-х²))*(-2x-2)
Производная равна нулю, если х=-1, Исследуем функцию на максимум, минимум и экстремум
_-3_______-1_______1_____
+ -
Значит, -1- точка максимума, максимум равен √(3-2*(-1)-(-1)²)=√4=2
При переходе через критическую точку знак производной меняется с плюса на минус, значит, на промежутке [-3 ;-1] функция возрастает, а на промежутке [-1 ;1] функция убывает.
График см. во вложении.
и постройте ее график?" />