Вариант 2
1. найдите значение выражения:
а) -100,04 +3/1, 96; в) 1,21-169 – 169-0,4;
6) (7 + 3) -143; г) v65* -63* - 19
2. преобразуйте выражение:
а) 0,181a*, если а 20; 6) -2496*, если b < 0.
3. выражение nх? -8х +16, если
а) 0 < x < 4;
б) х24.
4. решите уравнение:
а) + 10-х = 2;
б) f(x - 4) = 5, если f(x)=x.
5. докажите, что значение выражения
3+23 3-23
есть число рациональное.
1) 90°<143°<180° - Вторая четверть, sin143°>0 , cos143°<0 , tg143°<0 , ctg143°<0
2) -243° - вторая четверть. sin(-243°)>0 , cos(-243)°<0 , tg(-243°)<0 , ctg(-243°)<0
3) 735° . Весь круг - 360° , 360 * 2 =720° + ещё немного. Это значит, что 735° в 1 четверти. sin735°>0, cos735°>0 , tg735° и ctg 735° > 0.
4)-735°. -735° в 4 четверти. sin(-735°)<0 , cos(-735°)>0 + , tg(-735°) и ctg(-735°) < 0.
5) 300° - 3 четверть , sin(300°)<0 , cos(300°)<0 + , tg(300°) и ctg(300°) > 0 .
6) , ∈ 2 четверти,
7) , ∈ 3 четверти ,
8) 1 радиан ≈ 57° . -0,5 радиан - 4 четверть. sin(-0,5)<0 , cos(-0,5)>0 , tg(-0,5) < 0 ,ctg (-0,5) <0
9) 4 радиана ∈ 3 четверти (4*57°≈228° ), sin4<0 , cos4<0 , tg4>0 , ctg4>0
10) -7,3 ∈ 4 четверти (-7,3*57°≈-416,1°), sin(-7,3) <0 , cos(-7,3) >0 , tg(-7,3) <0 , ctg(-7,3) <0.
графиком будет гипербола
найдем асимптоты:
нули знаменателя - вертикальные асимптоты:
x^2-4=0
x^2=4
x1=2
x2=-2
x=2 и x=-2 - 2 асимптоты
горизонтальные асимптоты - предел функции, при x->+oo или x->-oo
y=0 - 1 горизонтальная асимптота
у функции нет точек пересечения с осями
найдем производную:
экстремиумы:
-4x=0
x=0
y=-0,5
определим промежутки возрастания/убывания:
так как (x^2-4)^2 знак не меняет, можно ее не учитывать, но при x=2 и x=-2 данное выражение не имеет смысла
-4x>=0 при x<=0 и x≠-2
-4x<=0 при x>=0 и x≠2
функция возрастает на (-∞;-2)∪(-2;0]
и убывает на [0;2)∪(2;+∞)
найдем дополнительные точки:
x=-3; y=0,4 (-3;0,4)
x=3; y=0,4 (3;0,4)
x=-1; y=-2/3 (-1;-2/3)
x=1; y=-2/3 (1;2/3)
строим график(см. приложение )