Вариант
Сократите дробь
a) (36x^2 y^5)/(24x^4 y^4 )ответ А(3y^5)/2 В(3y^ )/(2x^2 ) С(6x^ y^ )/(4y^1 ) Д(36y^5)/24 (1б)
b)(a^2-6a)/(3a-18)ответА3/18В(a^2-2)/18С a/3Д a/18[2б]
Выполните действия:
a) (3x+8)/(x+4)-x/(x+4)ответАx/(x+4)В (3x+8)/(x+4)С (x+8)/(x+4) Д 2 (2б)
b) 2a/(a^2-9)+5/(a+3)ответА (7a-15)/(a^2-9)В (2a+5)/(a^2-9)С (2a+10)/(a^2-9)Д5/(a+3)[3б]
3. Найдите допустимые значения переменной в выражении а)16/a (1б) б)7a/(9a-18) (2б
Из 3-х любых целых чисел всегда можно выбрать 2 таких, что они будут либо оба четные, либо оба нечетные.
То есть 2 числа, допустим, четное и нечетное. Третье будет либо четным, либо нечетным. Поэтому среди 3-х любых целых чисел всегда можно найти пару четных или пару нечетных чисел.
Для чего нам это нужно? - С четными все понятно:
2n - первое число, 2(n+k) - второе.
Тогда: 2n + 2(n+k) = 2*(n+n+k) = 2*(2n+k)
Результатом умножения на 2 любого целого числа будет четное число.
Теперь рассмотрим 2 нечетных числа:
2n+1 - первое число, 2(n+k)+1 -второе число
Сумма: 2n+1 + 2(n+k)+1 = 2*(2n+k)+2 - очевидно, также четное.
Таким образом, из 2016 целых чисел всегда можно выбрать 2 числа так, чтобы их сумма была четной.
2) Нет, нельзя.
Если такое разбиение есть, то полная сумма 1 + 2 + ... + 21 разбивается на две равные части:
1. сумма всех максимальных чисел в каждой группе и
2. сумма всех остальных по всем группам.
Поскольку полная сумма 1 + 2 + ... + 21 = ((1+21) * 21):2 = 11 * 21 = 231 нечётна, то это невозможно.
Из 3-х любых целых чисел всегда можно выбрать 2 таких, что они будут либо оба четные, либо оба нечетные.
То есть 2 числа, допустим, четное и нечетное. Третье будет либо четным, либо нечетным. Поэтому среди 3-х любых целых чисел всегда можно найти пару четных или пару нечетных чисел.
Для чего нам это нужно? - С четными все понятно:
2n - первое число, 2(n+k) - второе.
Тогда: 2n + 2(n+k) = 2*(n+n+k) = 2*(2n+k)
Результатом умножения на 2 любого целого числа будет четное число.
Теперь рассмотрим 2 нечетных числа:
2n+1 - первое число, 2(n+k)+1 -второе число
Сумма: 2n+1 + 2(n+k)+1 = 2*(2n+k)+2 - очевидно, также четное.
Таким образом, из 2016 целых чисел всегда можно выбрать 2 числа так, чтобы их сумма была четной.
2) Нет, нельзя.
Если такое разбиение есть, то полная сумма 1 + 2 + ... + 21 разбивается на две равные части:
1. сумма всех максимальных чисел в каждой группе и
2. сумма всех остальных по всем группам.
Поскольку полная сумма 1 + 2 + ... + 21 = ((1+21) * 21):2 = 11 * 21 = 231 нечётна, то это невозможно.