вариант2
1. выполните деление одночлена на одночлен:
а) (30а3с): (6с2); б) (-16х5у6): (8х2у4).
2. выполните деление многочлена на одночлен:
а) (10а2 - 15а): (-5а); б)(9х3 - 6х2 + 15х): (3х); в) (-8х2у2 + 20ху3): (-4ху2).
3. выполните действия: (25а7с7 – 15а4с2): (5 а4с) + (16а4с9 – 8ас4): (4ас3).
приводим дроби к общему знаменателю, общий знаменатель -число,которое делится на каждый знаменатель дроби в уравнении, это число 9. Делим 9 на знаменатель каждой дроби: 9:3=9, 9:9=1, 9:1=9, умножаем числители каждой дроби на полученное значение и складываем их. получаем:
(3Х+Х^2+54Х)/9 = 2
57Х + Х^2 = 18
Переносим число 18 в левую часть уравнения и приравниваем к нулю, получается стандартное квадратное уравнение типа ах^2 + bx + c = 0:
Х^2 + 57Х - 18 = 0
в нашем случае а=1, в=57, с= -18
для решения квадратных уравнений существуют специальные формулы.
для начала нужно вычислить дискриминант этого уравнения по формуле
D = в^2 - 4ас, чтобы узнать, по какой схеме искать корни уравнения и сколько их может быть в данном уравнении:
D=57^2 - 4*1*(-18)=3249 + 72= 3321
по правилам, если дискриминант больше нуля, то уравнение имеет два корня, то есть два значения Х, и они вычисляются по формуле:
Х1,Х2 = (-B = + - КОРЕНЬ из (В^2 - 4ас)) / 2а
подставляем в эту формулу наши значения а,в,с:
Х1= (-57 + КОРЕНЬ из (57^2 -4*1*(-18))) / 2*1
Х1= (-57+КОРЕНЬ из 3249+72) / 2
Х1= (-57+ 57,63) / 2
Х1 = 0,314
таким же образом подставив те же значения для Х2, только уже в числителе будет разница, а не сумма:
Х2= (-57-57,63) / 2
Х2 = - 57,315
№1
Дана функция
у=6х+19
а) у=? х=0,5 y=6*0.5+19=3+19=22
б) х=?у=1 6x+19=1 6x=-18 x=-3
в) А(-2;7) 6*(-2)+19=-12+19=7 проходит
№2
Построить график функции(только ответы, сам график не нужен)
у=2х-4
б) у=? х=1,5 y=2*1.5-4=3-4=-1
№4
Найти координаты точек пересечения графиков функций
у=47х-37
у=13х+23
47х-37=13х+23 34x=60 x=60/34=30/17 y=13*30/17+23=390/17+23=
№5
Задать формулой линейную функцию, график которой параллелен прямой у=3х-7 и проходит через наяало координат
параллельно прямой значит к=3
проходит через начало координат y=3x