Составьте математическую модель задачи и решите ее:
Катер 30 км против течения реки и 12 км по течению за то же время, за которое он может пройти по озеру 44 км. Определите скорость катера по озеру, если скорость течения реки составляет 2 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера (по озеру).
х + 2 - скорость катера по течению.
х - 2 - скорость катера против течения.
44/х - время катера по озеру.
12/(х + 2) - время катера по течению.
30/(х - 2) - время катера против течения.
По условию задачи уравнение (математическая модель):
12/(х + 2) + 30/(х - 2) = 44/х
Умножить все части уравнения на х(х - 2)(х + 2), чтобы избавиться от дробного выражения:
Пусть грузоподъемность грузовиков: ф, m и а, при этом ф < m < а. Из условия, общий объем (масса) груза равняется 10ф. Из этого получаем, что 10ф / (m+а) < 5. Условие о том, что недогрузка запрещена, можно трактовать как то, что 10ф / (m+а) — это целое число. Однако, даже из этого мы получим всего лишь набор уравнений: 5ф = 2(m+а) 10ф = m+а 5ф = m+а 10ф = m+а все данные уравнения имеют решения в целых числах ответ (от 1 до 4 перевозок) Еще можно решить методом подбора,но там очень много нужно подбирать
В решении.
Объяснение:
Составьте математическую модель задачи и решите ее:
Катер 30 км против течения реки и 12 км по течению за то же время, за которое он может пройти по озеру 44 км. Определите скорость катера по озеру, если скорость течения реки составляет 2 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера (по озеру).
х + 2 - скорость катера по течению.
х - 2 - скорость катера против течения.
44/х - время катера по озеру.
12/(х + 2) - время катера по течению.
30/(х - 2) - время катера против течения.
По условию задачи уравнение (математическая модель):
12/(х + 2) + 30/(х - 2) = 44/х
Умножить все части уравнения на х(х - 2)(х + 2), чтобы избавиться от дробного выражения:
12*х(х - 2) + 30*х(х + 2) = 44*(х² - 4)
12х² - 24х + 30х² + 60х = 44х² - 176
42х² - 44х² + 36х + 176 = 0
-2х² + 36х + 176 = 0/-2
х² - 18х - 88 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =324 + 352 = 676 √D=26
х₁=(-b-√D)/2a
х₁=(18-26)/2
х₁= -8/2 = -4, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(18+26)/2
х₂=44/2
х₂=22 (км/час) - скорость катера по озеру.
Проверка:
30/20 + 12/24 = 1,5 + 0,5 = 2 (часа);
44/22 = 2 (часа);
2 = 2, верно.
Из условия, общий объем (масса) груза равняется 10ф.
Из этого получаем, что 10ф / (m+а) < 5.
Условие о том, что недогрузка запрещена, можно трактовать как то, что 10ф / (m+а) — это целое число.
Однако, даже из этого мы получим всего лишь набор уравнений:
5ф = 2(m+а)
10ф = m+а
5ф = m+а
10ф = m+а
все данные уравнения имеют решения в целых числах
ответ (от 1 до 4 перевозок)
Еще можно решить методом подбора,но там очень много нужно подбирать