Вбассейн проведены две трубы, - и отводящая, причем через первую бассейн наполняется на 2 часа больше, чем через вторую опорожняется. при заполненном на одну треть (1\3) бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 часов. за сколько часов, действуя отдельно, первая труба наполняет, а вторая опорожняет бассейн?
Пусть скорость течения воды по подающей трубе = х
а скорость течения по отводящей трубе - у
Тогда время наполнения = 1/х часов, а время "опорожнения" = 1/у часов
Зная, что через первую трубу бассейн наполняется на 2 часа больше, чем через вторую опорожняется и что при заполненном на одну треть (1\3) бассейне, оноказался пустым спустя 8 часов, составим систему уравнений:
1/х = 1/у + 2 |*ху
1/3 + 8х - 8у = 0 |*3
у - х - 2ху = 0
1 + 24х - 24у = 0
выразим из второго уравнения х:
24х = 24у - 1
х = у - 1/24
подставим в первое уравнение:
у - (у-1/24) - 2у(у - 1/24) = 0
у - у + 1/24 - 2у^2 + 1/14у = 0 |*24
48у^2 - 2у - 1 = 0
у1 = 1/6
у2 = - 12/96 (не удовл. усл. задачи)
х = у - 1/24
х = 1/8
время наполнения - 1/х = 1/(1/8) = 8 часов
время опустошения - 1/у = 1/(1/6) = 6 часов