Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
olkvochka1707
10.05.2023 15:08 •
Алгебра
Вдоль аллеи в один ряд высадили клёны и лиственницы, всего 75
деревьев. Известно, что нет двух клёнов, между которыми растёт ровно 5
деревьев. Какое наибольшее количество клёнов могло быть высажено вдоль аллеи?
Показать ответ
Ответ:
чсссвввввавшвневаа
04.04.2023 12:23
Решение
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
0,0
(0 оценок)
Ответ:
73487Юлия14271
14.10.2020 11:39
Решение
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
0,0
(0 оценок)
Популярные вопросы: Алгебра
DashaTopjfnfvv
20.08.2022 07:45
Чему равна сумма корней уравнения: ||2х - 3| - 1 = х ! а) 14/3 б) 0 в) 42/3 г) 62/3...
Kartrider
29.11.2020 18:04
Решите систему уравнений : x^2+y^2=41 xy=20 заранее !...
ДочьЛюци
20.08.2022 07:45
Вынесите за скобки общий множитель а)3 а(х+у)-в(х+у).в)(с+8)-с(с+8).в)3(в-5)-а(5-в).г)с-д+а(д-с)люди...
помагите71
02.08.2022 11:14
На рисунке угол 4 равен 146°, угол 2 равен 40°, угол 3 равен 52°.найдите угол 1 ответ дайте в градусах ...
MarinaRaim26
20.08.2022 07:45
Сколько будет 2-1/3 напишите понятно...
OtlichnitcaAnna
18.10.2022 00:52
Найдите число целых решений неравенства...
Dima140916
29.12.2021 12:57
(3×7^2) × √(3×2^4)= √(3×7^2 ×3 ×2^4)= √7056=84 объясните почему, когда перемножили так получилось ( не перемножили, а какие действия, по идеи должно получиться 3x7 x...
Alexey2005201937
09.09.2021 01:34
Исследуйте функцию и постройте ее график f(x)=1/2 x^2-1/5 x^5 f(x)=x√(2-x) f(x)=2x/(1+x^2 )...
yanameleshko2016
26.08.2020 09:21
Найти экстремалы функции алгебра f(x) =2e^3x-3e^2x...
totty1
21.03.2020 00:16
с алгеброй очень надо. Выполнить дифференцирование функций...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z