Велосипедист ехал сначала 3 минуты с горы, а затем 5 минут в гору. обратный путь он проделал за 16минут, двигаясь с горы и в гору с теми же скоростями, что и прежде, во сколько раз скорость велосипедиста при движении с
горы больше, чем скорость в гору? решить
пусть х км/ч - скорость велосепедиста с горы
тогда у км/ч - скорость велосепедиста в гору
расстояние с горы = 3х
расстояние в гору = 5у
известно, что обратный путь он проделал за 16 минут, НО с той же скоростью
составляем уравнене:
3х/у + 5у/х=16
введё1м новую переменную т=х/у
тогда уравнение примет вид:
3т + 5/т=16
приводим к общему знаменателю и получаем:
3т во второй -16т + 5 = 0
решаем квадратное неравенство с дискриминанта:
дискриминант = 256 - 60 = 196
т первое = 16+14/6=5
т второе = 16 - 14/6= 1/3 (посторонний корень, так как т= х/у, а х > у - по условию задачи)
т = 5, а так как т = х/у, то => что х > у в 6 раз
ответ: в 6 раз скорость велосепедиста при движении с горы больше, чем скорость в гору