Вероятность попадания в цель первым стрелком при одном выстреле равна 0,75, вторым – 0,8, третьим – 0,9. Все стрелки сделали по одному выстрелу в цель. Найти вероятность того, что хотя бы один промахнулся.
Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше
Повысили на 20% - стало 120%
Снизили на 10% от 120%, т.е. на 12%
Стало: 120 - 12 = 108%
Второй шкаф: Первоначальная цена - 100%
Снизили на 10% - стало 100 - 10 = 90%
Повысили на 20% от 90%, т. е. на 90*0,2=18%
Стало: 90 + 18 = 108%
Цены шкафов после изменения остались одинаковые.
2) 0,125³ * 32² = (1/2³)³ * (2⁵)² = 1/2⁹ * 2¹⁰ = 2¹⁰⁻⁹ = 2
0,5⁻² = (1/2)⁻² = 2² = 4