1) пусть х км составляет весь путь велосипедиста. 2) тогда первую половину пути х/2 велосипедист проехал со скоростью х/2 : 3 = х : 6 км/ч. 3) вторую половину пути х/2 велосипедист проехал со скоростью х/2 : 2,5 = х : 5 км/ч. 4) по условию на втором участке скорость велосипедиста была больше на 3 км/ч, чем на первом, тогда можно записать выражение: х : 5 - х : 6 = 3. 5) решаем уравнение: х : 5 - х : 6 = 3, (6х - 5х)/30 = 3, х/30 = 3, х = 3 * 30, х = 90. 6) значит, х = 90 км проехал велосипедист. ответ: 90 км.
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума