Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
120 : (- 8 * (- 3) + 12 : (- 3)) - (- 48) : (- 16) = - 9
1) - 8 * (-3) = 24
2) 12 : (-3) = - 4
3) 24 + (- 4) = 20
4) - 120 : 20 = - 6
5) - 48 : (- 16) = 3
5) - 6 - 3 = - 9
- 75 * 4 - 204 : (- 3) + (- 210) : (- 7) = - 202
1) - 75 * 4 = - 300
2) 204 : (- 3) = - 68
3) - 210 : (- 7) = 30
4) - 300 - (- 68) = - 300 + 68 = - 232
5) - 232 + 30 = - 202
- 20,25 : (- 3,6) + 90,72 : (- 4,5) - 7,5 * 3,2 = - 38,535
1) - 20,25 : (- 3,6) = 5,625
2) 90,72 : (- 4,5) = - 20,16
3) 7,5 * 3,2 = 24
4) 5,625 + (- 20,16) = 5,625 - 20,16 = - 14,535
5) - 14,535 - 24 = - 38,535
Задача. Пусть х - цена ткани до подорожания. Процент - это сотая часть числа: 20% = 0,2; 25% = 0,25.
1) х * 0,2 + х = 1,2х - цена ткани после повышения цены на 20%;
2) 1,2х * 0,25 + 1,2х = 1,5х - цена ткани после повышения новой цены на 25%
3) Пропорция: 1 - 100% (первоначальная цена)
1,5 - х (окончательная цена)
х = 1,5 * 100 : 1 = 150%
150% - 100% = 50% - на столько процентов была повышена первоначальная цена.
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.