Вгаражном кооперативе в наличие 10 боксов, среди которых 4 имеют своих хозяев.
новый механик расставил машины по боксам наугад. найти вероятность того что
а) каждый автомобиль оказался в своем боксе?
б) не один автомобиль не был поставлен в свой бокс.
: )
Объяснение:
1.
а) a^2+3 / a^3 - 3-a / 3a = 3a^2+9-3a^2+a^3 / 3a^3 = a^3+9 / 3a^3
б) x / x-1 +x / x+1 = x^2+x+x^2-x / x^2-1 = 2x^2 / x^2-1
в) x / x-2y - 4y^2 / x^2-2xy = x / x-2y - 4y^2 / x(x-2y) = x^2 - 4y^2 / x(x-2y) = (x-2y)*(x+2y) / x(x-2y) = x+2y / x
г) 2a + b - 4ab / 2a+b = (2a(2a+b) + b(2a+b) - 4ab) / 2a+b = (4a^2+2ab+2ab+b^2 - 4ab) / 2a+b = 4a^2+b^2 / 2a+b = (2a+b)*(2a-b) / 2a+b = 2a-b
а) a+4 / 4a - a-2 / a^2 = a^2+4a-4a+8 / 4a^3 = a^2+8 / 4a^3
б) 3x / x+3 + 3x / x-3 = 3x^2-9x+3x^2+9x / x^2-9 = 6x^2 / x^2-9
в) 9x^2 / 3xy-y^2 - y / 3x-y = 9x^2 / y(3x-y) - y / 3x-y = 9x^2-y^2 / x(3x-y) = (3x-y)*(3x+y) / x(3x-y) = 3x+y / x
г) a-3b+6ab / a-3b = (a^2-3ab-3ab+9b^2+6ab) / a-3b = a^2+9b^2 / a-3b = (a+3b)*(a-3b) / a-3b = a+3b
1. Выделение полного квадрата
Прибавим и вычтем 4:
x^2 - 4x + 4 - 4 - 30 = 0
Заметим, что x^2 - 4x + 4 = (x - 2)^2, приведем подобные:
(x - 2)^2 - 34 = 0
(x - 2)^2 = 34
Извлекаем корень (я его обозначаю sqrt):
x - 2 = +- sqrt(34)
x = 2 +- sqrt(34)
2. Дискриминант.
Если есть уравнение ax^2 + bx + c = 0, то дискриминант вычисляется по формуле D = b^2 - 4ac, и решение (если D>0) имеет вид x = (-b +- sqrt(D))/2a.
a = 1, b = -4, c = -30.
D = 16 + 120 = 136 = 4 * 34
x = (4 +- sqrt(4 * 34))/2
Можно вынести 4 из под знака корня и сократить на 2:
x = (4 +- 2sqrt(34))/2 = 2 +- sqrt(34)
3. Дискриминант/4
Если уравнение имеет вид ax^2 + 2bx + c = 0, то можно вычислить D* = D/4 = b^2 - ac, решение будет выглядеть так: x = (-b +- sqrt(D*))/a
D* = 4 + 30 = 34
x = (2 +- sqrt(34))/1 = 2 +- sqrt(34)
Последний удобен, если старший коэффициент равен 1 или коэффициент при x чётный.
ответ. x = 2 +- sqrt(34).