Вгруппе 5 студентов учатся на отлично, 10- на хорошо и отлично, 9 - имеют тройки, 4 - неудовлетворительно. определите вероятность того, что вызванный к доске студент учится без двоек.
1) F(x) = 4x - x^3/3 + C F(-3) = 4(-3) - (-3)^3/3 + C = -12 + 27/3 + C = -3 + C = 10 C = 13 F(x) = 4x - x^3/3 + 13
2) f(x) = F'(x) = (cos 3x - cos pi)' = -3sin 3x
3) F(x) = -3/x - 7/5*sin 5x + C
4) Найдем, где они пересекаются - это пределы интегрирования y = x^2 y = 6 - x x^2 = 6 - x x^2 + x - 6 = 0 (x + 3)(x - 2) = 0 Int(-3; 2) (6 - x - x^2) dx = 6x - x^2/2 - x^3/3 | (-3; 2) = = 6*2 - 2^2/2 - 2^3/3 - (6(-3) - (-3)^2/2 - (-3)^3/3) = = 12 - 2 - 8/3 + 18 + 9/2 - 9 = 10 + 9 - 8/3 + 9/2 = 19 + 11/6 = 20 5/6
5) Найдем, где они пересекаются - это пределы интегрирования 2sin x = sin x sin x = 0 x1 = 0; x2 = pi Int(0; pi) (2sin x - sin x) dx = Int(0; pi) sin x dx = cos x |(0; pi) = = |cos pi - cos 0| = |-1 - 1| = |-2| = 2
F(-3) = 4(-3) - (-3)^3/3 + C = -12 + 27/3 + C = -3 + C = 10
C = 13
F(x) = 4x - x^3/3 + 13
2) f(x) = F'(x) = (cos 3x - cos pi)' = -3sin 3x
3) F(x) = -3/x - 7/5*sin 5x + C
4) Найдем, где они пересекаются - это пределы интегрирования
y = x^2
y = 6 - x
x^2 = 6 - x
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
Int(-3; 2) (6 - x - x^2) dx = 6x - x^2/2 - x^3/3 | (-3; 2) =
= 6*2 - 2^2/2 - 2^3/3 - (6(-3) - (-3)^2/2 - (-3)^3/3) =
= 12 - 2 - 8/3 + 18 + 9/2 - 9 = 10 + 9 - 8/3 + 9/2 = 19 + 11/6 = 20 5/6
5) Найдем, где они пересекаются - это пределы интегрирования
2sin x = sin x
sin x = 0
x1 = 0; x2 = pi
Int(0; pi) (2sin x - sin x) dx = Int(0; pi) sin x dx = cos x |(0; pi) =
= |cos pi - cos 0| = |-1 - 1| = |-2| = 2
4 4 * 4 = 16.
41
411 413 но ящиков 4.
412 414 16 * 4 = 64 числа.
42
421 423
422 424
43
431 433
432 434
44
441 443
442 444