1) 2015=1551+464. Догадаться нетрудно. Самый большой трехзначный палиндром это 999. Но 999+999=1998<2015. Значит, одно число больше 1000. Если оно начинается на 1, то т кончается 1. Тогда второе начинается и кончается 4, чтобы сумма кончалась на 5. Дальше просто подбираем. 2) Была дробь x/y. Петя получил (x-1)/(y-2). А Вася получил (x+1)/y. И дроби получились равные. (x-1)/(y-2)=(x+1)/y y(x-1)=(x+1)(y-2) xy-y=xy+y-2x-2 -2y=-2x-2 y=x+1 Была дробь, например, 3/4, а стала у Пети 2/2, а у Васи 3/3. Обе дроби равны 1. ответ : 1 3) С геометрией у меня проблемы, извините. 4) Долго думал, не получается.
1. Метод математической индукции. Проверим для n=1 n^3+3n^2+5n+3=12 делится на 3, утверждение верно для n=1 n^3+3n^3+5n+3=12 делится на 3, утверждение верно для n=1 Пусть утверждение верно для всех n≤k, докажем его для n=k+1 (k+1)^3+3(k+1)^2+5(k+1)+3= =k^3+3k^2+3k+1+3*(k^2+2k+1)+5k+5+3= =k^3+3k^2+5k+3+3k^2+9k+9= =(k^3+3k^2+5k+3)+3(k^2+3k+3) (k^3+3k^2+5k+3) делится на 3 по предположению индукции, 3(k^2+3k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n. Для тройки: (k+1)^3+3(k+1)^3+5(k+1)+3= =4(k^3+3k^3+3k+1)+5k+5+3=(4k^3+5k+3)+3*(4k^2+4k+3) (4k^3+5k+3) делится на 3 по предположению индукции, 3*(4k^2+4k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.
2) Была дробь x/y. Петя получил (x-1)/(y-2). А Вася получил (x+1)/y. И дроби получились равные.
(x-1)/(y-2)=(x+1)/y
y(x-1)=(x+1)(y-2)
xy-y=xy+y-2x-2
-2y=-2x-2
y=x+1
Была дробь, например, 3/4, а стала у Пети 2/2, а у Васи 3/3. Обе дроби равны 1.
ответ : 1
3) С геометрией у меня проблемы, извините.
4) Долго думал, не получается.
Проверим для n=1
n^3+3n^2+5n+3=12 делится на 3, утверждение верно для n=1
n^3+3n^3+5n+3=12 делится на 3, утверждение верно для n=1
Пусть утверждение верно для всех n≤k, докажем его для n=k+1
(k+1)^3+3(k+1)^2+5(k+1)+3=
=k^3+3k^2+3k+1+3*(k^2+2k+1)+5k+5+3=
=k^3+3k^2+5k+3+3k^2+9k+9=
=(k^3+3k^2+5k+3)+3(k^2+3k+3)
(k^3+3k^2+5k+3) делится на 3 по предположению индукции, 3(k^2+3k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.
Для тройки:
(k+1)^3+3(k+1)^3+5(k+1)+3=
=4(k^3+3k^3+3k+1)+5k+5+3=(4k^3+5k+3)+3*(4k^2+4k+3)
(4k^3+5k+3) делится на 3 по предположению индукции, 3*(4k^2+4k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.