В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
3drugasikaoztup3
3drugasikaoztup3
25.08.2022 22:35 •  Алгебра

Виберіть квадратний тричлен, коренями якого є числа - 2 і 7. А) х2 + 5х - 14;
Б) х2 + 5х + 14;
В) - х2 - 5х - 14;
Г) х2 - 5х - 14.

Виберіть два квадратні тричлени, які правильно розкладено на множники:

А) х2 + 5х – 36 =(х – 9)(х + 4); Б) х2 + 5х – 14 =(х – 2)(х + 7);
В) х2 + 5х – 24 =(х – 3)(х – 8); Г) х2 + 5х + 6 = (х + 2)(х +3);

Показать ответ
Ответ:
соннышко
соннышко
07.08.2021 06:27

ответ: у = -x^2+2(a-1)x+a^2. График - парабола, ветви которой вниз.

Раз два корня, то график пересекает ось Ох в двух точках, значит, вершина параболы должна быть в верхней полуплоскости. А раз число 1 находится между корнями,

то у (1) > 0

Имеем: y(1) = -1 + 2(а-1) + а^2

-1 + 2(а-1) + а^2 > 0

-1 + 2a - 2 + a^2 > 0

a^2 + 2a - 3 > 0

(a + 3)(a - 1) >0

a Є (- бесконечность; -3) U (1; +бесконечность)

2) D = (2 - m)^2 +4m + 12 = 4 - 4m + m^2 + 4m +12 =

= m^2 + 16 >0

(x1)^2 + (x2)^2 = (x1 + x2)^2 - 2x1x2

x1 + x2 = m - 2

x1x2 = -m - 3

(x1)^2 + (x2)^2 =(m - 2)^2 - 2(-m - 3) = m^2 - 4m + 4 + 2m + 6 =

= m^2 - 2m + 10.

Объяснение:

Минимальное значение будет при m = 2/2 = 1

0,0(0 оценок)
Ответ:
EgrVir2018
EgrVir2018
16.10.2022 21:19
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. глава 5. решение треугольников 5.1. прямоугольный треугольник  аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника. 1  рисунок 5.1.1.  прямоугольный треугольник. косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1) теорема 5.1.  косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника. доказательство  пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13 2  рисунок 5.1.2.  к теореме 5.1. но по построению ac2 = a1c1; ab2 = a1b1, следовательно, что и требовалось доказать. теорема 5.2.  теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. модель 5.2. доказательство теоремы пифагора. на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2. доказательство  пусть abc – данный прямоугольный треугольник с прямым углом при вершине c. 3  рисунок 5.1.3.  к доказательству теоремы пифагора. проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана. в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы. пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной. с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше. синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем так же как и косинус, синус угла и тангенс угла зависят только от величины угла. 4  рисунок 5.1.4. из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то катет, противолежащий углу α , равен произведению гипотенузы на sin α;  катет, прилежащий к углу α , равен произведению гипотенузы на cos α;  катет, противолежащий углу α , равен произведению второго катета на tg α.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота