В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
198565
198565
31.01.2022 15:14 •  Алгебра

Виконати ділення; (х^2-4x)/(8x^2) / (x-4)/4x

Показать ответ
Ответ:
Anas11111
Anas11111
11.03.2021 06:48
Лучше сразу сделать рисунок. По нему сразу видно о какой фигуре идет речь, в каких пределах по оси ОХ лежит эта фигура и где относительно оси ОХ она расположена, так как это влияет на знак перед интегралом. Площадь фигуры это определённый интеграл (геометрический смысл интеграла), поэтому она находится по формуле: S= \int\limits^b_a {f(x)} \, dx. Пределы интегрирования можно определить по рисунку, а можно и аналитически решив уравнение: 4х-х²=0; x(4-x)=0; x=0; 4-x=0; x=4. То есть наша фигура расположена на промежутке [0;4]. Далее подставляем нашу функцию и пределы интегрирования в формулу площади и считаем: S= \int\limits^4_0 {(4x-x^2)} \, dx =(2x^2- \frac{x^3}{3} )|_0^4=2*4^2- \frac{4^3}{3} -0=32- \frac{64}{3} =10 \frac{2}{3} ед².
0,0(0 оценок)
Ответ:
ada9797
ada9797
29.09.2020 17:26
(\frac{30a}{9a^2-25}+\frac{5}{5-3a}):(\frac{3a-5}{3a+5}-1)

Все знают с начальной школы, что \frac{a}{a}=1, что \frac{x^{132}}{x^{132}}=1, и что даже \frac{a^{10}fx^n}{a^{10}fx^n}=1. Выходит, что и \frac{3a+5}{3a+5}=1. А теперь внимание на тот шаг, когда единицу мы представили в виде одинаковых значений для числителя и знаменателя, что и у знаменателя уменьшаемого числа. 

\frac{3a-5}{3a+5}-\frac{3a+5}{3a+5}=\frac{3a-5-3a-5}{3a+5}=\frac{-10}{3a+5}, или равно -\frac{10}{3a+5}. Что же, делитель стал выглядеть несколько изящнее, теперь разбираемся с делимым. 

\frac{30a}{9a^2-25}+\frac{5}{5-3a}=\frac{30a}{(3a-5)(3a+5)}+\frac{5}{5-3a}

Очередные свойства алгебраической дроби. Ведь \frac{1}{2x+4} равно \frac{1}{2(x+2)}\frac{1}{2}(x+2)^{-1} и даже равно \frac{1}{-2(-x-2)}, или равно -\frac{1}{2(-x-2)}, так? Выходит, что и \frac{5}{5-3a} равно \frac{5}{-1(-5+3a)}, или равно -\frac{5}{3a-5}. Однако не стоит забывать о том, что обыкновенные дроби нельзя складывать/вычитать, имея при этом разные знаменатели. Необходимо умножить числитель и знаменатель вычитаемого на 3a+5, чтобы основания дробей обрели одинаковое значение: -\frac{5}{3a-5}=-\frac{5(3a+5)}{(3a-5)(3a+5)}. Теперь то можно складывать. 

\frac{30a}{(3a-5)(3a+5)}+(-\frac{5(3a+5)}{(3a-5)(3a+5)})=\frac{30a-(15a+25)}{(3a-5)(3a+5)}=\frac{15a-25}{(3a-5)(3a+5)}=\\\frac{5(3a-5)}{(3a-5)(3a+5)}=\frac{5}{3a+5}

Осталось выполнить деление дробей и найти ответ.

\frac{5}{3a+5}:(-\frac{10}{3a+5})=\frac{5}{3a+5}*(-\frac{3a+5}{10})=-\frac{5}{10}=0,5

ответ: значение выражения (\frac{30a}{9a^2-25}+\frac{5}{5-3a}):(\frac{3a-5}{3a+5}-1) равно \frac{1}{2} при любом значении α. 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота