Если у заданной функции y=x²+4| x |-2x раскрыть модуль, то получим 2 функции:
y=x² - 4x - 2x = x² - 6x,
y=x² - 4(-x) - 2x = х² + 2х.
Так как у обеих функций коэффициент с=0, то их общей границей является начало координат.
График заданной функции представляет собой сочетание двух парабол. У левой параболы вершина находится в точке:
Хо = -в/2а = -(-6)/(2*1) = 3, Уо = 9-6*3 = -9.
У правой Хо = -2/2 = -1, Уо = 1 +2*(-1) = -1.
ответ: прямая y=m имеет с графиком не менее одной, но не более трёх общих при -9 ≤ m ≤ -1.
2
Объяснение:
Первое что нужно сделать, узнать ОДЗ(область допустимых значений).
В нашем случае выражение под корнем должно быть неотрицательное. То есть:
x-4≥0
x≥4
Произведение равно нулю, когда хотя бы один из множителей равен нулю.
В нашем случае:
(x²-25)=0 или √(x-4)=0
Решим первое уравнение
(x²-25)=0
Видим разность квадратов ( a²-b²=(a-b)(a+b) ):
x²-5²=0
(x-5)(x+5)=0
Опять же первое свойство которое я написал:
x-5=0 > x=5 (входит в ОДЗ)
или
x+5=0 > x=-5 (он нам не подходит, т.к. не входит в ОДЗ)
Решаем второе уравнение
√(x-4)=0 (возводим в квадрат обе части уравнения)
x-4=0
x=4 (входит в ОДЗ)
Если у заданной функции y=x²+4| x |-2x раскрыть модуль, то получим 2 функции:
y=x² - 4x - 2x = x² - 6x,
y=x² - 4(-x) - 2x = х² + 2х.
Так как у обеих функций коэффициент с=0, то их общей границей является начало координат.
График заданной функции представляет собой сочетание двух парабол. У левой параболы вершина находится в точке:
Хо = -в/2а = -(-6)/(2*1) = 3, Уо = 9-6*3 = -9.
У правой Хо = -2/2 = -1, Уо = 1 +2*(-1) = -1.
ответ: прямая y=m имеет с графиком не менее одной, но не более трёх общих при -9 ≤ m ≤ -1.
2
Объяснение:
Первое что нужно сделать, узнать ОДЗ(область допустимых значений).
В нашем случае выражение под корнем должно быть неотрицательное. То есть:
x-4≥0
x≥4
Произведение равно нулю, когда хотя бы один из множителей равен нулю.
В нашем случае:
(x²-25)=0 или √(x-4)=0
Решим первое уравнение
(x²-25)=0
Видим разность квадратов ( a²-b²=(a-b)(a+b) ):
x²-5²=0
(x-5)(x+5)=0
Опять же первое свойство которое я написал:
x-5=0 > x=5 (входит в ОДЗ)
или
x+5=0 > x=-5 (он нам не подходит, т.к. не входит в ОДЗ)
Решаем второе уравнение
√(x-4)=0 (возводим в квадрат обе части уравнения)
x-4=0
x=4 (входит в ОДЗ)