Найдем простую радикальную форму данного в задании корня, для этого умножим его на сопряженное число: 1/(6+√2) * (6-√2) / (6-√2) = (6-√2) / (6-√2)(6+√2) =(6-√2) / (36-2) = (6-√2)/34
если наше уравнение ax^2 + bx + c =0 должно быть c рац. коэфф., то кв. корень из дискриминанта должен быть кратен √2(иначе кв. корню неоткуда взяться), откуда (и из формулы корней кв. ур-я) следует, что второй корень уравнения должен быть (6+√2)/34
пусть a = 1, тогда согласно теореме Виетта (6+√2)/34 * (6-√2)/34 = с (6+√2)/34 + (6-√2)/34 = -b
c = (36-2)/(34*34) = 1/34 b = -12/34 = -6/17
и наше уравнение x^2 -6/17x + 1/34 = 0 ну или в более человеческом виде (умножаем обе части на 34) 34x^2 - 12x + 1 =0
Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
1/(6+√2) * (6-√2) / (6-√2) = (6-√2) / (6-√2)(6+√2) =(6-√2) / (36-2) = (6-√2)/34
если наше уравнение ax^2 + bx + c =0 должно быть c рац. коэфф., то кв. корень из дискриминанта должен быть кратен √2(иначе кв. корню неоткуда взяться), откуда (и из формулы корней кв. ур-я) следует, что второй корень уравнения должен быть (6+√2)/34
пусть a = 1, тогда согласно теореме Виетта
(6+√2)/34 * (6-√2)/34 = с
(6+√2)/34 + (6-√2)/34 = -b
c = (36-2)/(34*34) = 1/34
b = -12/34 = -6/17
и наше уравнение
x^2 -6/17x + 1/34 = 0
ну или в более человеческом виде (умножаем обе части на 34)
34x^2 - 12x + 1 =0
t=120:X
Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25).
Можем составить уравнение:
120:Х =120:1,2Х + 0,25
Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение:
144 = 120 + 0,3Х
-0,3Х = 120 - 144
-0,3Х = - 24
0,3Х = 24
Х = 24 : 0,3
Х = 80 (км\час, первоначальная скорость мотоциклиста).
ПРОВЕРКА:
120:80=1,5 (часа)
120:96+0,25=1,5(часа).