Визначити висоту в метрах відкритого басейну із квадратним дном, об’єм якого дорівнює 32 м^3, такого, щоб на облицювання його стін і дна витрати були найменшими .
Число цифр в каждом числе равно n, то есть общее количество цифр равно: n*10^n, но поскольку ясно, что при такой форме записи чисел количества цифр 0-9 будут одинаковыми, то количество цифр 0-9 равно:
n*10^n/10 = n*10^(n-1)
Иначе говоря, любая из цифр 1-9 будет встречаться ровно n*10^(n-1) раз в числах от 1 до 10^n-1 (при стандартной записи чисел)
Сумма всех 10 цифр равна: 0+1+2+3+...+9 = 9*10/2 = 45
1) а) sin 72°=sin(90°-18°)=cos18°; т.к. по формуле приведения
sin(90°-α)=cosα
б) cos 71°=cos(90°-19°)=sin19°;
т.к. по формуле приведения
cos(90°-α)=sinα
2) a) sin 175°=sin (180°-5°)= sin5°; т.к. по формуле приведения
sin(180°-α)=sinα
б) cos 155°=cos(180°-25°)=-cos25°; т.к. по формуле приведения
cos(180°-α)=-cosα
3) a) sin 285°=sin (270°+15°)=-cos15°; т.к. по формуле приведения
sin(270°+α)=-cosα
б) cos 273=cos (270°+3°)=sin3°; т.к. по формуле приведения
cos(270°+α)=sinα
4) a) sin (-355°)=-sin355°=-sin(360°-5°)=sin5°; т.к. по формуле приведения
sin(360°-α)=-sinα, и функция синуса есть нечетная функция.
б) cos (-451°)=cos451°=cos(360+91°)=cos91°=cos(90°+1°)=-sin1° ;
т.к. по формуле приведения
cos(90°+α)=-sinα и функция косинуса есть четная функция.
в) tg65°= tg(90°-35°)=сtg35°; т.к. по формуле приведения
tg(90°-α)=ctgα
в) tg 102°= tg(90°+12°)=-сtg12°, т.к. по формуле приведения
tg(90°+α)=-ctgα
в) tg 250°=tg(270°-20°)=ctg20°;
т.к. по формуле приведения
tg(170°-α)=ctgα
в) tg (-317°)=-tg (360°-43°)=tg43°, т.к. по формуле приведения
tg(360°-α)=-tgα, и функция тангенса есть нечетная.
Дополнение. Функция наз. четной, если область ее определения симметрична относительно нуля и у(-х)=у(х); функция наз. нечетной, если область ее определения симметрична относительно нуля и
у(-х)=-у(х);
формулы приведения позволяют приводить функции тупого угла к функциям острого угла.
ответ: 14649
Объяснение:
Попробуем вывести формулу, которая вычисляет сумму:
X(n) = S(0) + S(1) +S(2)+...+S(10^n-1) - сумма всех цифр в числах до последнего n- значного числа.
Определим количество цифр 1-9, что попадутся в числах от 1 до 10^n -1.
Для удобства будем вести запись таких чисел с нулями в начале:
000...0, 000...1, 000..2,..., 000...10,..., 999...9
Число цифр в каждом числе равно n, то есть общее количество цифр равно: n*10^n, но поскольку ясно, что при такой форме записи чисел количества цифр 0-9 будут одинаковыми, то количество цифр 0-9 равно:
n*10^n/10 = n*10^(n-1)
Иначе говоря, любая из цифр 1-9 будет встречаться ровно n*10^(n-1) раз в числах от 1 до 10^n-1 (при стандартной записи чисел)
Сумма всех 10 цифр равна: 0+1+2+3+...+9 = 9*10/2 = 45
Тогда с учетом повторяемости каждой цифры имеем:
X(n) = 45n*10^(n-1)
Откуда:
S(1000) + S(1001) + ... + S(1999) = 1*1000 + S(0) + S(1) + S(2) +...+S(999) =
= 1000 + X(3) = 1000 + 45 * 300 = 1000 + 13500 = 14500
S(2000) + S(2001) +...+S(2021) = 2 * 22 + S(0) + S(1) + S(2) +...+S(19) + (S(20) +S(21) ) =2*22 + (S(0) + S(1)+...+S(9) ) + (S(10) + S(11) +...S(19) ) + 5 =
= 2*22 + 2*45 + 10*1 + 5 = 44 + 90 + 15 = 149
Тогда:
S(1000) + S(1001) + ... + S(2021) = 14500 + 149 = 14649
α∈(0°45°)
1) а) sin 72°=sin(90°-18°)=cos18°; т.к. по формуле приведения
sin(90°-α)=cosα
б) cos 71°=cos(90°-19°)=sin19°;
т.к. по формуле приведения
cos(90°-α)=sinα
2) a) sin 175°=sin (180°-5°)= sin5°; т.к. по формуле приведения
sin(180°-α)=sinα
б) cos 155°=cos(180°-25°)=-cos25°; т.к. по формуле приведения
cos(180°-α)=-cosα
3) a) sin 285°=sin (270°+15°)=-cos15°; т.к. по формуле приведения
sin(270°+α)=-cosα
б) cos 273=cos (270°+3°)=sin3°; т.к. по формуле приведения
cos(270°+α)=sinα
4) a) sin (-355°)=-sin355°=-sin(360°-5°)=sin5°; т.к. по формуле приведения
sin(360°-α)=-sinα, и функция синуса есть нечетная функция.
б) cos (-451°)=cos451°=cos(360+91°)=cos91°=cos(90°+1°)=-sin1° ;
т.к. по формуле приведения
cos(90°+α)=-sinα и функция косинуса есть четная функция.
в) tg65°= tg(90°-35°)=сtg35°; т.к. по формуле приведения
tg(90°-α)=ctgα
в) tg 102°= tg(90°+12°)=-сtg12°, т.к. по формуле приведения
tg(90°+α)=-ctgα
в) tg 250°=tg(270°-20°)=ctg20°;
т.к. по формуле приведения
tg(170°-α)=ctgα
в) tg (-317°)=-tg (360°-43°)=tg43°, т.к. по формуле приведения
tg(360°-α)=-tgα, и функция тангенса есть нечетная.
Дополнение. Функция наз. четной, если область ее определения симметрична относительно нуля и у(-х)=у(х); функция наз. нечетной, если область ее определения симметрична относительно нуля и
у(-х)=-у(х);
формулы приведения позволяют приводить функции тупого угла к функциям острого угла.