См. объяснения.
Объяснение:
1) сокращаем на а; ответ: 2/3
2) сокращаем на а; ответ: 1/c
3) в знаменателе х выносим за скобки, после чего сокращаем на х и получаем:
х/(х-1).
4) в числители - разность квадратов, которую запишем так:
(а - 3в) * (а + 3в); сокращаем и числитель и знаменатель на (а-3в);
ответ: а+3в;
5) в числителе - разность квадратов, а в знаменателе выносим х; получаем:
(х-1) * (х+1) - это числитель;
х (х+1) - знаменатель;
сокращаем на (х+1); ответ: (х-1) /х.
Под римской цифрой II.
1) В числителе - квадрат суммы 2-х чисел, в знаменателе - разность квадратов;
числитель (а+5)(а+5)
знаменатель (а+5)(а-5);
сокращаем на (а+5).
ответ: (а+5) / (а-5).
2) Начинаем со знаменателя.
Группируем вс и 2 с; с выносим за скобку, получаем с (в+2);
группируем -2в - 4; - 2 выносим за скобку, получаем -2(в+2);
теперь (в+2) выносим за скобку; получаем в знаменателе (в+2)(с-2).
Теперь сокращаем на (в+2).
ответ: (в+2) /(с-2)
См. объяснения.
Объяснение:
1) сокращаем на а; ответ: 2/3
2) сокращаем на а; ответ: 1/c
3) в знаменателе х выносим за скобки, после чего сокращаем на х и получаем:
х/(х-1).
4) в числители - разность квадратов, которую запишем так:
(а - 3в) * (а + 3в); сокращаем и числитель и знаменатель на (а-3в);
ответ: а+3в;
5) в числителе - разность квадратов, а в знаменателе выносим х; получаем:
(х-1) * (х+1) - это числитель;
х (х+1) - знаменатель;
сокращаем на (х+1); ответ: (х-1) /х.
Под римской цифрой II.
1) В числителе - квадрат суммы 2-х чисел, в знаменателе - разность квадратов;
числитель (а+5)(а+5)
знаменатель (а+5)(а-5);
сокращаем на (а+5).
ответ: (а+5) / (а-5).
2) Начинаем со знаменателя.
Группируем вс и 2 с; с выносим за скобку, получаем с (в+2);
группируем -2в - 4; - 2 выносим за скобку, получаем -2(в+2);
теперь (в+2) выносим за скобку; получаем в знаменателе (в+2)(с-2).
Теперь сокращаем на (в+2).
ответ: (в+2) /(с-2)
решение:
d = 23 - 26 = -3
a₁₀ = a₁ + 9d = 26 +9*(-3) = 26 -27 = -1
2) Является ли число 30 членом арифметической прогрессии
а1=4; а4=8,5
решение:
а₄ = а₁ + 3d
8,5 = 4 +3d
3d = 4,5
d = 1,5
an = a₁ + d(n-1)
30 = 4 +1,5(n-1)
30 = 4 +1,5n -1,5
1,5n = 27,5
n = 27,5 : 1,5 =55/3 - число не целое
вывод: 30 не является членом прогрессии.
3)Вычислите S₁₉, если an=15-3n
а₁ = 15 - 3*1 = 12
а₁₉ = 15 - 3*19 = 15 - 57 = -42
S₁₉ =(12 -42)*19/2 = -15*19 = 2854)Сколько положительных членов содержится в арифметической прогрессии 12,6; 12,1; ... ?
а₁ = 12,6
d = 12,1 - 12,6 = -0,5
an = a₁ + d(n-1)
a₁ + d(n-1) > 0
12,6 -0,5(n-1) > 0, ⇒12,6 -0,5n +0,5 > 0, ⇒ -0,5n > -13,1, ⇒ n < 26,2
ответ: 26