V - знак корня 1)V(x+9) =x-3 ОДЗ: {x+9>=0; x>=-9 {x-3>=0; x>=3 Решение ОДЗ: x>=3 Т.к. обе части уравнения неотрицательны, возведем их в квадрат: x+9= (x-3)^2 x+9= x^2-6x+9 x+9-x^2+6x-9=0 -x^2+7x=0 x^2-7x=0 x(x-7)=0 x=0; x=7 x=0 нам не подходит по ОДЗ ответ:{7} 2)V(x-2)= V(x^2-4) ОДЗ: {x-2>=0; x>=2 {x^2-4>=0; x<=-2, x>=2 Решение ОДЗ: x>=2 Возведем в квадрат обе части: x-2=x^2-4 x-2-x^2+4=0 -x^2+x+2=0 x^2-x-2=0 D=(-1)^2-4*1*(-2)=9 x1=(1-3)/2=-1 - не подходит по ОДЗ x2=(1+3)/2=2 ответ:{2} 3)V(12+x^2) <6-x В левой части неравенства стоит корень,принимающий только неотрицательные значения. Следовательно, и правая часть должна быть положительной. ОДЗ: {12+x^2>=0 при x e R {6-x>0, x<6 Решение ОДЗ: x<6 Возведем в квадрат обе части: 12+x^2<(6-x)^2 12+x^2<36-12x+x^2 12+x^2-36+12x-x^2<0 12x-24<0 12x<24 x<2 С учетом ОДЗ: x <2
Пусть собственная скорость лодки x [км/ч], тогда скорость лодки по течению x+2 [км/ч] и против течения x-2 [км/ч]. Время, затраченное на первый отрезок пути: 16/(x-2) [ч], на второй отрезок пути: 12/(x+2) [ч]. Общее время в пути: 16/(x-2) + 12/(x+2) = 3 [ч] x <>2 и x <> -2, домножаем обе части уравнения на (x+2)*(x-2), получаем: 16*(x+2) + 12*(x-2) = 3*(x+2)*(x-2) 16*x + 32 + 12*x - 24 = 3* x^2 - 12, где x^2 = x*x 28*x + 8 = 3* x^2 - 12 3*x^2 - 28*x - 20 = 0 Дискриминант: D = b^2 - 4*a*c = 28*28 - 4*3*(-20) = 1024 = 32^2 x1 = (-b + sqrt(D))/(2*a) = (28 + 32) / 6 = 10 [км/ч] x2 = (-b - sqrt(D))/(2*a) = (28 - 32) / 6 = -2/3 [км/ч] Второй корень логически не имеет смысла, поэтому ответ: 10 км/ч.
1)V(x+9) =x-3
ОДЗ:
{x+9>=0; x>=-9
{x-3>=0; x>=3
Решение ОДЗ: x>=3
Т.к. обе части уравнения неотрицательны, возведем их в квадрат:
x+9= (x-3)^2
x+9= x^2-6x+9
x+9-x^2+6x-9=0
-x^2+7x=0
x^2-7x=0
x(x-7)=0
x=0; x=7
x=0 нам не подходит по ОДЗ
ответ:{7}
2)V(x-2)= V(x^2-4)
ОДЗ:
{x-2>=0; x>=2
{x^2-4>=0; x<=-2, x>=2
Решение ОДЗ: x>=2
Возведем в квадрат обе части:
x-2=x^2-4
x-2-x^2+4=0
-x^2+x+2=0
x^2-x-2=0
D=(-1)^2-4*1*(-2)=9
x1=(1-3)/2=-1 - не подходит по ОДЗ
x2=(1+3)/2=2
ответ:{2}
3)V(12+x^2) <6-x
В левой части неравенства стоит корень,принимающий только неотрицательные значения. Следовательно, и правая часть должна быть положительной.
ОДЗ:
{12+x^2>=0 при x e R
{6-x>0, x<6
Решение ОДЗ: x<6
Возведем в квадрат обе части:
12+x^2<(6-x)^2
12+x^2<36-12x+x^2
12+x^2-36+12x-x^2<0
12x-24<0
12x<24
x<2
С учетом ОДЗ: x <2
Пусть собственная скорость лодки x [км/ч], тогда скорость лодки по течению x+2 [км/ч] и против течения x-2 [км/ч].
Время, затраченное на первый отрезок пути: 16/(x-2) [ч],
на второй отрезок пути: 12/(x+2) [ч].
Общее время в пути: 16/(x-2) + 12/(x+2) = 3 [ч]
x <>2 и x <> -2, домножаем обе части уравнения на (x+2)*(x-2), получаем:
16*(x+2) + 12*(x-2) = 3*(x+2)*(x-2)
16*x + 32 + 12*x - 24 = 3* x^2 - 12, где x^2 = x*x
28*x + 8 = 3* x^2 - 12
3*x^2 - 28*x - 20 = 0
Дискриминант: D = b^2 - 4*a*c = 28*28 - 4*3*(-20) = 1024 = 32^2
x1 = (-b + sqrt(D))/(2*a) = (28 + 32) / 6 = 10 [км/ч]
x2 = (-b - sqrt(D))/(2*a) = (28 - 32) / 6 = -2/3 [км/ч]
Второй корень логически не имеет смысла, поэтому ответ: 10 км/ч.