Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .