a = -1/3; b = 10/3
Объяснение:
Надо просто перемножить эти числа.
Это делается также, как перемножение многочленов.
Только надо помнить. что i*i = -1.
z1*z2 = (2 + i)(0,2 + 0,4i) = 2*0,2 + 0,2i + 2*0,4i + 0,4i*i =
= 0,4 + 0,2i + 0,8i - 0,4 = 0 + 1i = i
Теперь решаем уравнение:
a*z1 + b*z2 = i
a(2 + i) + b(0,2 + 0,4i) = i
2a + ai + 0,2b + 0,4bi = i
(2a + 0,2b) + (a + 0,4b)*i = i = 0 + 1*i
Составляем систему по коэффициентам:
{ 2a + 0,2b = 0
{ a + 0,4b = 1
Умножаем 1 уравнение на 5, а 2 уравнение на -10:
{ 10a + b = 0
{ -10a - 4b = -10
Складываем уравнения:
0a - 3b = -10
b = -10/(-3) = 10/3
a = -b/10 = -10/3 : 10 = -1/3
какое условие такой и ответ1/(1*4) = (1/1 - 1/4)*1/3
1/(4*7) = (1/4 - 1/7)*1/31/(7*10) = (1/7 - 1/10)*1/3
1/((3k-2)*(3k+1)) = (1/(3k-2) - 1/(3k+1))*1/3
1/((3k+1)*(3k+4)) = (1/(3k+1) - 1/(3k+4))*1/31/1*4 + 1/4*7 +...+ 1/((3k-2)*(3k+1)) + 1/((3k+1)*(3k+4)) = (1/1 - 1/4)*1/3 + (1/4 - 1/7)*1/3 + (1/7 - 1/10)*1/3 + + (1/(3k-2) - 1/(3k+1))*1/3 +(1/(3k+1) - 1/(3k+4))*1/3 = = (1/1 )*1/3 - 1/(3k+4)*1/3 = 1/3 - 1/(3k+4)*1/3 < 1/3 - доказаноесли следовать точной обозначениям из задания при условии что n принимает только определенные значения (n=3k+1) то 1/1*4 + 1/4*7 +...+ 1/n*(n+3) = 1/3 - 1/(3*(n+3)) < 1/3
a = -1/3; b = 10/3
Объяснение:
Надо просто перемножить эти числа.
Это делается также, как перемножение многочленов.
Только надо помнить. что i*i = -1.
z1*z2 = (2 + i)(0,2 + 0,4i) = 2*0,2 + 0,2i + 2*0,4i + 0,4i*i =
= 0,4 + 0,2i + 0,8i - 0,4 = 0 + 1i = i
Теперь решаем уравнение:
a*z1 + b*z2 = i
a(2 + i) + b(0,2 + 0,4i) = i
2a + ai + 0,2b + 0,4bi = i
(2a + 0,2b) + (a + 0,4b)*i = i = 0 + 1*i
Составляем систему по коэффициентам:
{ 2a + 0,2b = 0
{ a + 0,4b = 1
Умножаем 1 уравнение на 5, а 2 уравнение на -10:
{ 10a + b = 0
{ -10a - 4b = -10
Складываем уравнения:
0a - 3b = -10
b = -10/(-3) = 10/3
a = -b/10 = -10/3 : 10 = -1/3
Объяснение:
какое условие такой и ответ
1/(1*4) = (1/1 - 1/4)*1/3
1/(4*7) = (1/4 - 1/7)*1/3
1/(7*10) = (1/7 - 1/10)*1/3
1/((3k-2)*(3k+1)) = (1/(3k-2) - 1/(3k+1))*1/3
1/((3k+1)*(3k+4)) = (1/(3k+1) - 1/(3k+4))*1/3
1/1*4 + 1/4*7 +...+ 1/((3k-2)*(3k+1)) + 1/((3k+1)*(3k+4)) =
(1/1 - 1/4)*1/3 + (1/4 - 1/7)*1/3 + (1/7 - 1/10)*1/3 + + (1/(3k-2) - 1/(3k+1))*1/3 +(1/(3k+1) - 1/(3k+4))*1/3 =
= (1/1 )*1/3 - 1/(3k+4)*1/3 = 1/3 - 1/(3k+4)*1/3 < 1/3 - доказано
если следовать точной обозначениям из задания при условии что n принимает только определенные значения (n=3k+1) то
1/1*4 + 1/4*7 +...+ 1/n*(n+3) = 1/3 - 1/(3*(n+3)) < 1/3