Сделаем замену y=пx, тогда получаем уравнение sin(y) = 1, это элементарное тригонометрическое уравнение, решаем его y = (п/2) + 2пn, где n пробегает все целые числа. Делаем обратную замену пx = (п/2) + 2пn, теперь разделим последнее уравнение на пи, x = (1/2) + 2n, по условию, выделим из данного семейства решений лишь положительные решения, то есть x>0. (1/2) + 2n>0; <=> 2n>-1/2, <=> n>-1/4. n является целым, среди целых только n>=0 удовлетворяют n>-1/4. Итак, x=(1/2) + 2n, где n целое и n>=0. наименьшим из таких иксов будет икс при n=0 (при возрастании номеров n, значения x=x(n) = (1/2) + 2n, лишь возрастают). При n=0, x=1/2.
Упростим выражение, чтобы найти первое решение. Возьмем обратный косинус с обеих сторон уравнения для извлечения X изнутри с косинуса:
Вычисляем , получая :
Умножим числитель первой дроби на знаменатель второй дроби. Приравняем это к произведению знаменателя первой дроби и числителя второй дроби:
Решим уравнение относительно :
Функция косинуса положительная в первом и четвертом квадрантах. Для нахождения второго решения вычтем значение угла из и определим решение в четвертом квадранте:
Упростим выражение, чтобы найти второе решение. Решим относительно :
Вычтем полный оборот из 84, пока угол не упадет между 0 и . В этом случае нужно вычесть 13 раз:
Умножив 2 на -13, получим -26:
Найдем период. 42 Период функции равен 42, то есть значения будут повторяться через каждые 42 радиан в обоих направлениях: ±±.
sin(y) = 1, это элементарное тригонометрическое уравнение, решаем его
y = (п/2) + 2пn, где n пробегает все целые числа. Делаем обратную замену
пx = (п/2) + 2пn, теперь разделим последнее уравнение на пи,
x = (1/2) + 2n,
по условию, выделим из данного семейства решений лишь положительные решения, то есть x>0.
(1/2) + 2n>0; <=> 2n>-1/2, <=> n>-1/4. n является целым, среди целых только n>=0 удовлетворяют n>-1/4.
Итак, x=(1/2) + 2n, где n целое и n>=0.
наименьшим из таких иксов будет икс при n=0 (при возрастании номеров n, значения x=x(n) = (1/2) + 2n, лишь возрастают).
При n=0, x=1/2.
Возьмем обратный косинус с обеих сторон уравнения для извлечения X изнутри с косинуса:
Вычисляем , получая :
Умножим числитель первой дроби на знаменатель второй дроби. Приравняем это к произведению знаменателя первой дроби и числителя второй дроби:
Решим уравнение относительно :
Функция косинуса положительная в первом и четвертом квадрантах. Для нахождения второго решения вычтем значение угла из и определим решение в четвертом квадранте:
Упростим выражение, чтобы найти второе решение.
Решим относительно :
Вычтем полный оборот из 84, пока угол не упадет между 0 и . В этом случае нужно вычесть 13 раз:
Умножив 2 на -13, получим -26:
Найдем период.
42
Период функции равен 42, то есть значения будут повторяться через каждые 42 радиан в обоих направлениях:
±±.