Водном гараже имеется 10 легковых автомобилей и 7 грузовых, а в другом - 8 легковых и 9 грузовых. сколькими можно составить комбинации для отправки в рейс легкового и грузового автомобилей, выбрав по одному автомобилю из каждого гаража?
1) Разрешим наше дифференциальное уравнение относительно производной - уравнение с разделяющимися переменными Воспользуемся определением дифференциала
Интегрируя обе части уравнения, получаем
- общее решение
Разделяем переменные
интегрируя обе части уравнения, получаем
- общий интеграл
Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует
Пример 3. Убедимся, является ли дифференциальное уравнение однородным.
Итак, дифференциальное уравнение является однородным. Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену , тогда
Подставляем в исходное уравнение
Получили уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Разделяем переменные
Интегрируя обе части уравнения, получаем
Обратная замена
- общий интеграл
Пример 4. Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное. Воспользуемся методом Эйлера Пусть , тогда будем иметь характеристическое уравнение следующего вида:
Тогда общее решение будет иметь вид:
- общее решение Пример 5. Аналогично с примером 4) Пусть , тогда получаем
1) а) В точке пересечения графика с осью OX y равен 0 3x-4=0⇒3x=4⇒x=4/3 A(4/3;0) - точка пересечения графика с осью OX б) В точке пересечения графика с осью YX x равен 0 y=3*0-4⇒y=-4 B(0;-4) - точка пересечения графика с осью OY 2) x=-3,2⇒y=3*(-3,2)-4=-9,6-4=-13,6 3) y=8⇒3x-4=8⇒3x=8+4⇒3x=12⇒x=4 4) y=kx+b - уравнение прямой в общем виде. Параллельные прямые имею одинаковые угловые коэф-ты y=3x-4⇒k=3 - угловой коэф-т Значит новая прямая имеет вид: y=3x+b Нужно найти b. По условию y(0)=-5⇒3*0+b=-5⇒b=-5⇒ y=3x-5 - искомое уравнение прямой
Разрешим наше дифференциальное уравнение относительно производной
- уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Интегрируя обе части уравнения, получаем
- общее решение
Разделяем переменные
интегрируя обе части уравнения, получаем
- общий интеграл
Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует
Пример 3.
Убедимся, является ли дифференциальное уравнение однородным.
Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену
, тогда
Подставляем в исходное уравнение
Получили уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Разделяем переменные
Интегрируя обе части уравнения, получаем
Обратная замена
- общий интеграл
Пример 4.
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть , тогда будем иметь характеристическое уравнение следующего вида:
Тогда общее решение будет иметь вид:
- общее решение
Пример 5.
Аналогично с примером 4)
Пусть , тогда получаем
Общее решение:
Найдем производную функции
Подставим начальные условия
- частное решение
3x-4=0⇒3x=4⇒x=4/3
A(4/3;0) - точка пересечения графика с осью OX
б) В точке пересечения графика с осью YX x равен 0
y=3*0-4⇒y=-4
B(0;-4) - точка пересечения графика с осью OY
2) x=-3,2⇒y=3*(-3,2)-4=-9,6-4=-13,6
3) y=8⇒3x-4=8⇒3x=8+4⇒3x=12⇒x=4
4) y=kx+b - уравнение прямой в общем виде.
Параллельные прямые имею одинаковые угловые коэф-ты
y=3x-4⇒k=3 - угловой коэф-т
Значит новая прямая имеет вид: y=3x+b
Нужно найти b.
По условию y(0)=-5⇒3*0+b=-5⇒b=-5⇒
y=3x-5 - искомое уравнение прямой