Вопрос №5 (один ответ) : Составить общее уравнение прямой -1/5 (x+10)+3(y-2/3)=0 и указать координаты нормального вектора
ответ 1:
2x – y + 2 = 0, n = (2; – 1)
ответ 2:
x – 5y – 15 = 0, n = (1; – 5)
ответ 3:
4x + 2y + 1 = 0, n = (4; 2)
ответ 4:
x – 15y + 20 = 0, n = (1; – 15)
У переменной а наименьшая степень 2, у b наименьшая 1.
Значит, выносим a^2*b
16a^5b - 8a^4b^3 - 6a^3b^3 + 10a^2b^4 = 2a^2b*(8a^3 - 4a^2b^2 - 3ab^2 + 5b^3)
2) Выносим за скобки (2x - 7)
(2x - 7)*(3a + 5b - (2x - 7)) = (2x - 7)(3a + 5b - 2x + 7)
Общий множитель выносим из-под квадрата, то есть возводим в квадрат.
1) (3x + 6)^2 = (3(x + 2))^2 = 9(x + 2)^2
2) (7x - 14)^2 = 49(x - 2)^2
3) (5m + 30)^2 = 25(m + 6)^2
4) (2a - 4b)^3 = 8(a - 2b)^3 - здесь 2 в куб возвели
Задача 2:
2) В двух коробках b карандашей, причём в первой коробке в 4 раза больше...
(b -4) / 2
Задача 3:
3) В двух коробках c карандашей, причём во второй коробке на 12 карандашей...
Пусть x (карандашей) - в первой коробке, тогда во второй коробке (x - 12) (карандашей), по условию задачи всего C карандашей, составим уравнение:
x + (x - 12) = C
x + x - 12 = C
2x = C + 12 (если вопрос:"А ПОЧЕМУ СТАЛО С+12?", то знайте при переносе числа из одной стороны в другую знак меняется)
x = (C +12) / 2
и с лёгкостью находим икс
Задача 1:
1) Периметр прямоугольника 24 см, одна его сторона в 5 раз больше другой...
Пусть x - одна сторона, тогда 5*x другая сторона, по условию задачи известно что периметр их равен 24 ;общая формула периметра P = (a+b) * 2, составим уравенение:
( x + 5x ) * 2 = 24
2x + 10x = 24
12x = 24
x = 24 / 12
x = 2(см) (первую сторону нашли)
вторая сторона равна 5x, значит 5 * 2 = 10(см)
Формула площади a * b
2 * 10 = 20()